


4 • MXDJ.COM 8 • 2004

Valid Code
Dreamweaver MX 2004
by justin kozuch

The Evolution of Web
Servies and Flash
A match made in http://heaven
by david vogeleer

Form vs Feature Part 2
Drawing methods
by ron rockwell

Beginning OOP in AS 2.0
How to duplicate MovieClips 
with classes
by john c. bland ii

LEGO Virtual Showroom
Practice makes perfect
by lisa del padre

june 2004

10

22

28

34

42

40 xile
Cartoon
by louis f. cuffari

7 WPS
A scalable
approach
by erik larson

18 Grab Hold of the Vine and
Swing Over the Pitfalls
How to deliver interactive Flash 
sites efficiently
by ryan moore

38 Text on the Other Platform
Accent on ANSI
by james newton

48 Interactive Kiosks
Maximizing the capabilities
by darrel plant

58 ASCII, ANSI, Roman 1, and
What’s All That?
Earn your ‘guru’ nickname
by kerry thompson

58 vanguard
140 Decibels
by insomnia creations







MXDJ.COM • 7

n most Web sites there is a

barrier between the people

who want to update and pub-

lish content to the site and the Web site

itself. Content eventually becomes out of

date, improvements remain undone, and

new information languishes unpublished

– waiting for precious design time or

development budget before going live.

For corporate Web sites, large budgets

are required to fund the work; for

intranets or smaller sites, this often

means doing the work when there’s time

– which means not doing it at all.

The Macromedia Web Publishing

System (WPS) solves this intractable

problem by offering a scalable approach

that works for large and small organiza-

tions alike – a solution that provides

everything an organization needs to

build, manage, and publish to Web sites.

The WPS meets the needs of Web devel-

opers, IT managers, and business profes-

sionals, empowering users to easily pub-

lish to the Web within a centrally con-

trolled, standards-based environment.

The WPS includes three key elements:

Macromedia Studio MX 2004 with Flash

Professional for Web developers; the new

Macromedia Contribute 3 with

FlashPaper 2 for nontechnical Web site

publishing; and the new, server-based

Contribute Publishing Services for central

administration by Web and IT managers.

Perhaps most importantly, with a starting

price of less than $2,500 to empower 10

users plus one developer, the WPS pro-

vides this at an affordable price, allowing

IT purchasers to buy only what they need

and begin using it immediately.

Eliminated Bottlenecks 
Organizations have been challenged

by the Web content management prob-

lem since the first Web site was published.

Many still rely on Webmasters and Web

teams to maintain the site, creating a bot-

tleneck that frustrates and delays business

managers and bothers the Web team with

never-ending maintenance duties.

Some organizations attempt to teach

nontechnical managers how to use Web

site–building products like Microsoft

FrontPage, but those tools require signifi-

cant technical training to be used effec-

tively and do not offer critical administra-

tive and HTML code controls needed to

manage users and protect the design

and functionality of the Web site. 

Web content management systems

often promise the nirvana of central con-

trol and broad-based empowerment, but

the majority of those systems fail to

deliver because of their technical com-

plexity, expensive up-front licensing

costs, and daunting implementation.

Even successful, custom-built, dynamic

systems suffer from two major short-

comings: they usually do a poor job of

flexibly handling unstructured content

and they do not give content contribu-

tors the intuitive, true visual editing and

rich content creation experience they

expect. 

The WPS is a radical alternative to  tra-

ditional solutions: it’s easy to use, it’s

affordable, and it works. This new solu-

tion distributes Web publishing capabili-

ties throughout an organization and

across enterprises so that business man-

agers can make changes themselves or

delegate updates to others. 

The affordable price and flexible

architecture make it a perfect stand-

alone solution for intranets and small to

midsized business Web sites. It can also

be used to complement existing systems

and fill in their gaps. For example, it can

be used to manage unstructured content

that does not lend itself to dynamic sys-

tems, or used as an intuitive front end for

editing content stored in file-based con-

tent management systems, such as

Interwoven TeamSite.

Integrated with Existing
Macromedia Products 

The WPS builds on extensive efforts

by Macromedia to integrate its products

deeply and create a comprehensive solu-

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Dreamweaver Editor
Dave McFarland
Flash Editor
Jesse Warden
Fireworks Editor
Kleanthis Economou
FreeHand Editor
Louis F. Cuffari
Ron Rockwell
ColdFusion Editor
Robert Diamond
Director Editor
James Newton

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA, 
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Executive Editors
Gail Schultz, 201 802-3043
gail@sys-con.com
Jamie Matusow, 201 802-3042
jamie@sys-con.com

Editors
Nancy Valentine, 201 802-3044
nancy@sys-con.com
Jennifer Van Winckel, 201 802-3052
jennifer@sys-con.com

Assistant Editor
Torrey Gaver, 201 802-3041
torrey@sys-con.com

Technical Editors
James Newton • Sarge Sargent

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645 

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ 

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com, 
Frank Cipolla: 845 731-3832,
frank.cipolla@epostdirect.com

Promotional Reprints
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com

Copyright © 2004
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by any
means, electronic or mechanical, including
photocopy or any information storage and
retrieval system, without written permission. 

MX Developer’s Journal (ISSN#1546-2242) 
is published monthly (12 times a year) by 
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645. 

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish, and
authorize its readers to use the articles submit-
ted for publication. MX and MX-based marks
are trademarks or registered trademarks of
Macromedia, in the United States and other
countries. SYS-CON Publications, Inc., is inde-
pendent of Macromedia. All brand and product
names used on these pages are trade names,
service marks or trademarks of their respective
companies.

w
p

s

o
The Macromedia Web Publishing System

by erik larson

Introducing...



8 • MXDJ.COM

w
p

s
SYS-CON MEDIA
President & CEO 
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher 
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales & Marketing 
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing 
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director 
Robyn Forma, 201 802-3022
robyn@sys-con.com
Advertising Sales Manager
Megan Mussa, 201 802-3023
megan@sys-con.com
Associate Sales Managers
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com
Beth Jones, 201 802-3028
beth@sys-con.com
Dorothy Gil, 201 802-3024
dorothy@sys-con.com

PRODUCTION
Production Consultant 
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer 
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director 
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director 
Richard Silverberg, 201 802-3036
richards@sys-con.com
Assistant Art Director 
Tami Beatty, 201 802-3038
tami@sys-con.com

SYS-CON.COM
Vice President, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers 
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Matthew Pollotta, 201 802-3054
matthew@sys-con.com
Online Editor
Martin Wezdecki 201 802-3045
martin@sys-con.com

ACCOUNTING
Financial Analyst 
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable 
Betty White, 201 802-3002
betty@sys-con.com
Accounts Receivable 
Shannon Rymsza, 201 802-3082
shannon@sys-con.com

EVENTS
President, SYS-CON Events 
Grisha Davida, 201 802-3004
grisha@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators 
Shelia Dickerson, 201 802-3082
shelia@sys-con.com
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
JDJ Store Manager 
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

tion to today’s Web site problems.

Integration points range from

Dreamweaver templates that protect

page integrity when used by Contribute

users to Fireworks integration that facili-

tates powerful image editing in both

Dreamweaver and Contribute. The results

are heavily leveraged in the WPS, making

Web-site publishing straightforward and

approachable. This also allows over 2 mil-

lion Web professionals already familiar

with Dreamweaver and Studio to use the

WPS to collaborate effectively with the

nontechnical business professionals who

contribute content to the sites they build

and manage. 

Many of the core innovations of the

WPS lie in the new Contribute 3 release,

which truly takes the product to the

next level and allows for unprecedent-

ed scalability, affordability, and ease of

use. Improvements include a new

approval and review system, dramati-

cally enhanced performance, full sup-

port for CSS and CSS-P, an integrated

image editor, and completely re-archi-

tected and enhanced administrative

controls. 

Contribute 3 includes new cus-

tomization and extensibility features

that are valuable for large deployments.

With Contribute 3 it is possible to

extend Contribute using the same APIs

available for Dreamweaver extensions

and create customized installers suitable

for remote deployment across an enter-

prise. This means you can create your

own version of Contribute with branded

elements or entirely new custom fea-

tures. 

The new Contribute Publishing

Services server component included with

the WPS allows Web and IT managers to

manage users, roles, and Web-site editing

permissions from a central location. This

lightweight application is easily installed

on Windows, Linux, and Unix servers; or

easily deployed to standard J2EE applica-

tion environments. It enables administra-

tors to centrally manage access to Web

sites, integrate with enterprise systems

using LDAP and Active Directory user

directories, and track publishing activities

across large numbers of Web sites and

publishers. 

Contribute Publishing Services track-

ing takes advantage of a new Web serv-

ices–based notification feature in

Contribute 3 that allows partners to cre-

ate server-side extensions. All editing

and publishing activities taken by the

Contribute client can be published via

SOAP to a server and then processed as

needed to drive page deployments,

send notifications, generate reports, or

trigger any other required server-side

actions. 

The new release of Contribute also

integrates Macromedia FlashPaper 2, a

dramatic update to this exciting docu-

ment-sharing technology included on

both the Mac OS and Windows. The

printer-driver technology behind

FlashPaper 2 generates enhanced Flash

documents (SWF files) with full text

search and selection, bookmarking, and

hyperlinking. The Flash document user

interface includes an extended

ActionScript API. FlashPaper 2 inte-

grates directly with Microsoft Office

and, on Windows, the FlashPaper 2

printer driver can even generate Adobe

PDF files.

New Business
Opportunities 

The WPS offers Web agencies a range

of new business opportunities. The sys-

tem encourages clients to engage in Web

projects to revamp existing sites or build

out new extranets and intranets. Its

affordable price makes projects possible

for more customers than ever – from

small organizations to departmental

intranets. Used in conjunction with cus-

tom-built dynamic systems, it maintains

site sections that are easily treated as

page-based or static content and focuses

dynamic efforts on transactional applica-

tions and catalog-type database content.

By focusing first on the needs of non-

technical individuals, the Macromedia

Web Publishing System unlocks the

power of Web publishing for everyone

within an organization who needs to

communicate information to others with-

out putting Web-site integrity at risk.

Organizations can communicate internal-

ly through intranets or externally through

corporate Web sites, government agen-

cies can publish policies and procedures

to their constituencies, and educational

institutions can publish campus-wide e-

learning and academic Web sites.

Try out a preview version of the solution

at www.macromedia.com/go/wps.

Erik Larson is director of

product management for

the Macromedia Web

Publishing System. A

Macromedian since early

2000, Erik has focused

on new product develop-

ment in the areas of user

experience, information

architecture, and content

management. 

elarson@macromedia.com





10 • MXDJ.COM 8 • 2004



8 • 2004 MXDJ.COM • 11

validcode

 i
by justin kozuch

n today’s wild, wild 
Web, the 
catchphrases are 
usability, 
accessibility, 
standards-
compliance, and 
valid code. Why is 
valid code so 

important? The sheer number of  
browsers out there that display 
the same code differently make it 
virtually impossible to have 
different versions of  code for 
each browser. In this day and 
age, maintaining standardized 
and valid code is essential.

Dreamweaver MX 2004, being the top-of-the-heap soft-
ware application it is, can help you code, but sometimes it
gets a bit confused. Today, we are going to look at how to
extend and use Dreamweaver MX 2004 to write standards-
compliant, valid code.

Are you ready to get your valid code freak on? If so, keep
reading!

Analyzing Your Workflow
The cool thing about Dreamweaver is that its users come

from all walks of life, from beginners who’ve just installed the
software, to hard-core code warriors who use its Server
Behaviours to build complex applications or code their own
applications from scratch.

Hand coders will love the Code View (View -> Code)
because it facilitates typing code without having to use a
third-party text editor. To the relief of many hand coders
using WYSIWYG applications, Dreamweaver, unlike other
applications, won’t change your code at will.

Designers will love the Design View (View -> Design)
because it allows them to see the end-result of the underly-
ing code, and the Property Inspector (Window > Properties,
Ctrl+F3) will allow them, to a degree, to tweak the code with-

out having to remember HTML or crack open their trusty
HTML books.

As I mentioned previously, Dreamweaver will sometimes
get confused and insert invalid or deprecated code. Poor
Dreamweaver. However, have no fear, we will make it all bet-
ter in a second. Let’s start by configuring Dreamweaver for
accessibility.

Setting It All Up
Open Dreamweaver MX 2004 and click on Edit ->

Preferences (Ctrl+U). Select the Accessibility option from the
Category list (see image I) and check all four boxes, labeled
Form Objects, Frames, Media, and Images.

What happens when you insert one of those items? A dia-
log box will pop up (see images II through V) and prompt
you to add information, such as ALT tags and the like. These
dialog boxes almost literally force you to enter the proper
required attributes for the XHTML doctype. Just don’t hit the
“Cancel” button. Otherwise you will have to hand code the
information, or delete the element and start over. Not fun
and very time-consuming!

Now we will configure Dreamweaver to format your code
properly. Select Code Format from the Category list (see



12 • MXDJ.COM 8 • 2004

Image VI) and, in the resulting pane,
select <lowercase> from the Default
Tag Case drop-down menu. Finally,
select lowercase=”value” from the
Default Attribute Case drop-down
menu. For centering, select the radio
button next to the words “Use DIV tag”.

We choose <lowercase> from the
Default Tag Case drop-down menu
because XHTML doesn’t allow for
uppercase tags. The same rule applies
for the Default Attribute Case. For an
example of what happens if you use
uppercase tags and attributes with the
XHTML doctype, create a page with
uppercase tags and attributes and try
to validate the page
(http://validator.w3.org/). Validation
errors galore!

Also, don’t forget to check off the
box named “Make Document XHTML
Compliant.” Because the acceptable
format for documents on the Web uses
the XHTML doctype, we will configure
Dreamweaver to automatically use the

XHTML doctype if we create a new file.
Click on “New Document” in the
Category list and, in the resulting pane,
select UTF-8 from the Default
Encoding drop-down menu.

Now, when you create a new page
in Dreamweaver, you will see a few
changes. The biggest of them is the
new doctype.

Transitional: <!DOCTYPE html PUBLIC "-

//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml

1-transitional.dtd">

The other two doctypes available
for use with XHTML 1.0 are:

Strict: <!DOCTYPE html PUBLIC "-

//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml

1-strict.dtd">

Frameset: <!DOCTYPE html PUBLIC "-

//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml

1-frameset.dtd">

If you would like to use XHTML
Strict doctype as opposed to XHTML
Transitional, simply add it to the
Default.html file located in C:\Program
Files\Macromedia\Dreamweaver MX
2004\Configuration\Templates, or
Macintosh HD > Applications >
Macromedia Dreamweaver MX 2004 >
Configuration > Templates, if you are

using a Macintosh Operating System. I
will discuss how to do that later on in
this article.

For more information about doc-
types, read Holly Bergevin’s excellent
article “Rendering Mode and Doctype
Switching” on CommunityMX at
www.communitymx.com/content/arti-
cle.cfm?page=2&cid=E2F258C46D285F
EE.

Finally, the last thing on our list is to
configure the Code Validation capabili-
ties of Dreamweaver. Click on
“Validator” in the Category list, and
check the box next to “XHTML 1.0
Transitional”.

And Dreamweaver is configured!
The fun stuff really starts now, because
we will go more in-depth and do some
hacking (the good kind!).

Doctypes and Charsets
Dreamweaver does a pretty good

job of generating the code for an
XHTML-compliant Web document:

<!DOCTYPE html PUBLIC "-//W3C//DTD

XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml

1-transitional.dtd">

<html

xmlns="http://www.w3.org/1999/xhtml">

<head>

<meta http-equiv="Content-Type" con-

tent="text/html; charset=iso-8859-1"

/> <title>Untitled Document</title>

</head>

<body>

</body>

</html>

However, there are still a few errors,
and the namespace is incomplete.
That’s not a big deal; we will fix all that
right now.

Locate the document called
Default.html on your hard drive. If you
are on the Windows operating system,
this file is located in C:\Program
Files\Macromedia\Dreamweaver MX
2004\Configuration\Templates. If you
are using a Macintosh, you can find it
in Macintosh HD > Applications >
Macromedia Dreamweaver MX 2004 >
Configuration > Templates. Danilo
Celic has created an awesome exten-
sion that allows for the opening of

im
a

g
e

 I
I

im
a

g
e

 I



default document types. Check out
www.communitymx.com/content/arti-
cle.cfm?cid=01E77 for more informa-
tion.

Make a backup of this file (ALWAYS
make backups if you are editing any of
Dreamweaver’s main configuration
files), and call it something like Default
(backup).html.

Open the Default.html file in a text
editor, and enter in the following code:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD

XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml

1-transitional.dtd">

<html

xmlns="http://www.w3.org/1999/xhtml" 

xml:lang="en" lang="en">

<head>

<title>Untitled Document</title>

</head>

<body>

</body>

</html>

Note that in this example, the XML
declaration is included. XHTML docu-
ment authors are strongly encouraged
to use XML declarations in all of their
documents. However, an XML declara-
tion like the one previously mentioned
is not required in all XML documents.
In fact, some browsers fail when con-
fronted with an XML declaration.  

The XML declaration is required
when the character encoding of the
document is other than the default
UTF-8 or UTF-16 and no encoding was
determined by a higher-level protocol.

Because we are declaring the docu-
ment encoding type to be UTF-8,
replace the code snippet with this one: 

<!DOCTYPE html PUBLIC "-//W3C//DTD

XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml

1-transitional.dtd">

<html

xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" con-

tent="text/html; charset=utf-8" />

<title>Untitled Document</title>

</head>

<body>

</body>

</html>

While you are here, you can set up
links to any style sheets, insert basic
meta tags, or do any other general
maintenance.

The reason we use UTF-8 as the
encoding type is that UTF-8 is the nor-
mal character encoding for any HTML
file that contains text in two or more
non-Latin scripts, but it can be used for
any document.

Save the Default.html file, and close
it.

Closing the Tags
A few months ago, I had a

conversation with an industry
colleague at a local user group
event. He was speaking about
how to get the software to do
the work for you, as opposed to
having to do all the hard work
yourself. The interesting thing
was, I realized just how right he
was. Think about it. Why do all
the hard work yourself, when the
software can do it for you?

XHTML requires you to close
non-closing (“empty”) elements,
including input tags, image tags,

horizontal rule tags, and break tags.
(For more information, see XHTML
Guidelines in the NYPL Online Style
Guide at
www.nypl.org/styleguide/xhtml/guide
lines.html and W3C’s HTML
Compatibility Guidelines for XHTML
1.0, located at www.w3.org
/TR/xhtml1/#guidelines.) Closing these
pesky elements by hand can be one of
the most time-consuming tasks in
making the transition to XHTML. 

Line Breaks
You can modify Dreamweaver to do

the work for you. Let’s start with the
simple line break, an HTML element
with which we are all familiar.

First, find the file called
Linebreak.htm. The file is located in
C:\Program Files\Macromedia\

8 • 2004 MXDJ.COM • 13

im
a

g
e

 I
II

im
a

g
e

 I
V

im
a

g
e

 V



14 • MXDJ.COM 8 • 2004

Dreamweaver MX 2004\Configuration\
Objects\Characters, if you are using the
Windows Operating System. If you are
on the Macintosh Operating System, it
is located in Macintosh HD >
Applications > Macromedia
Dreamweaver MX 2004 >
Configuration.

Change line 18 of the
Linebreak.htm to look like this:

return "<br />";

To test if your changes worked, cre-
ate a new HTML document in
Dreamweaver, and insert a line break.
View the Code (View -> Code) to make
sure it worked.

Images
We will also need to “close” the

images. The process is similar to what
you’ve just done with line breaks, but a
bit more complicated.

Go to Configuration\Objects\
Common and make a backup of the
Image.js file. Open the file in a text edi-
tor (any one will suffice) and modify
line 45 to look like this:

rtnStr= '<img src="' + newURL + '"

/>';

Again, test your work by opening a
new HTML document and inserting an
image file. I could go on and on about
how to do this for every single non-
closing element out there. However, in

an effort to be brief (and to prevent
you from falling asleep), repeat the
above steps for HR.htm and any other
non-closing elements in the following
directories:
• \Configuration\Objects\Forms: The

files you want to edit are:
button.htm (line 22), checkbox.htm
(line 22), file field.htm (line 40), hid-
den field.htm (line 22), image field.js
(line 16), radio.htm (line 22), text
field.htm (line 22).

• \Configuration\Objects\Head: The
files you want to edit are: base.js
(line 29), description.js (line 16), key-
words.js (line 15), link.js (line 38),
meta.js (line 29), refresh.js (line 22).

A Quick Word Of Advice
After you have completed all of the

nonclosing elements, create a new
document that uses all such elements
and do a bit of QA testing. Run the
pages through the HTML validator to
ensure that the code is valid. After all
your efforts, the last thing you want to
do is create pages with invalid code.

The Bold and The Italic
You will notice that Dreamweaver

still uses the <b> and <i> tags to bold
or italicize text. Unfortunately, this is
not conducive to semantically correct
code. If you want to write true XHTML,
you should be using the more mean-
ingful <strong> and <em> tags. We’ll
go ahead and change that right now.

Open menus.xml (located in
Configuration\Menus) and change the
code to look like this, on approximate-
ly line 1514:

<menuitem name="_Bold" key="Cmd+B"

file="Menus/MM/Text_Style.htm"

argument="'strong'"

id="DWMenu_Text_Style_B" />

<menuitem name="_Italic" key="Cmd+I"

file="Menus/MM/Text_Style.htm"

argument="'em'"

id="DWMenu_Text_Style_I" />

TIP: Do not open this menus.xml in
Dreamweaver. Open it using a text edi-
tor. Also, make sure you don’t use a
keyboard shortcut sequence that is
currently in use. Cmd+Shift+h is a pret-
ty safe bet.

im
a

g
e

 V
I

im
a

g
e

 V
II

Justin Kozuch is a writer,

Web developer, and

Team Macromedia mem-

ber who takes pride in

helping other

Macromedia

Dreamweaver users. His

work is published weekly

on CommunityMX.com.

He’s also the founder of

Dreaming in TO

(www.dreaminginto.com,

a Macromedia

Dreamweaver User

Group located in

Toronto, ON. A dynamic

“junkie,” Justin’s passion

lies in PHP/mySQL,

organic design, and

breadcrumb navigation.

justin@dreaminginto.com





MXDJ 
Section Editors

Dreamweaver 
Dave McFarland

Author of Dreamweaver MX 2004: The Missing

Manual, Dave can be relied upon to bring

Dreamweaver MX to life for MXDJ readers with

clarity, authority, and good humor.

Flash
Jesse Warden

A multimedia engineer and Flash developer,

Jesse maintains a Flash blog at www.jesse

warden.com and says, referring to the MX prod-

uct range, that "Things are changing, opportunity

is on the frontier, a paradigm shift is occurring for

Web design, Web applications, et al."

Fireworks
Kleanthis Economou

A Web developer/software engineer since 1995,

now specializing in .NET Framework solutions,

Kleanthis is a contributing author of various

Fireworks publications and is the technical editor

of the Fireworks MX Bible. As an extension

developer, he contributed two extensions to the

latest release of Fireworks.

FreeHand
Louis F. Cuffari

Cofounder and art director of Insomnia Creations

(www.insomniacreations.com), Louis has spent

most of his life as a studio artist, including medi-

ums from charcoal portraits to oil/acrylic on can-

vas. In addition to studio art, he has been

involved in several motion picture projects in the

facility of directing, screenwriting, and art direc-

tion. Louis’s creative works expand extensively

into graphic design, and he has expertise in both

Web and print media. He is deputy art director

for SYS-CON Media and the designer 

of MX Developer’s Journal. 

Ron Rockwell
Illustrator, designer, author, and Team

Macromedia member, Ron Rockwell lives and

works with his wife, Yvonne, in the Pocono

Mountains of Pennsylvania. Ron is MXDJ’s

FreeHand editor and the author of FreeHand 10

f/x & Design, and coauthor of Studio MX Bible

and the Digital Photography Bible. He has Web

sites at www.nidus-corp.com and 

www.brainstormer.org.

ColdFusion
Robert Diamond

Vice president of information systems for 

SYS-CON Media and editor-in-chief of

ColdFusion Developer’s Journal, Robert was

named one of the "Top thirty magazine industry

executives under the age of 30" in Folio maga-

zine’s November 2000 issue. He holds a BS

degree in information management and technol-

ogy from the School of Information Studies at

Syracuse University. www.robertdiamond.com 

16 • MXDJ.COM 8 • 2004

And that’s it! You’re done. Now
Dreamweaver is creating standards-
compliant code.

You might be asking yourself why
all of this work was worth the effort.
There are many reasons.

Accessibility

Because Web standards incorpo-
rate and support accessibility compli-
ance, a standards-compliant Web site
is one step closer to accessibility
compliance. By making your site
accessible to the millions of people
affected by disabilities, you can
increase your customer base. In many
jurisdictions, accessible sites are man-
dated by law.

An improved user experience also
tops the list of reasons. Non-standard
code can make it next to impossible
for people using less common plat-
forms, devices, or user agents to access
your site’s content. If your site is stan-
dards-compliant, then your site is avail-
able to all Web users, who are your
potential customers.

Faster Page Loads and Lower

Bandwidth Costs

Studies have shown that using
modern, standards-based design can

reduce the weight (also known as file
size) of a site by 25% to 50%. Who can
argue with that?

Device Independence

By employing the most recent
standards for CSS, you can make it
possible for your Web page content
to be accessed by different browsers
and devices – for example, the same
Web site can be usable on both a cell
phone and a fancy new computer.

There are many other reasons why
you should use standards-compliant
code; these are just a few of the more
convincing arguments as to why you
should adopt a standards-centric
workflow.

Resources
• What Every Web Site Owner Should

Know About Standards: A Web

Standards Primer:

http://maccaws.org/kit/primer
• The Way Forward with Web

Standards: 

http://maccaws.org/kit/
way-forward

• The Web Standards Project:

www.webstandards.org
• The Web Standards Group:

www.webstandardsgroup.org

im
a

g
e

 V
II

I

“A standards-compliant 
Web site is one step closer 
to accessibility compliance”





18 • MXDJ.COM 8 • 2004

he world of Flash development

can be a dangerous place.

Although Flash offers the most

comprehensive set of tools for

Web site user interface development,

there are numerous pitfalls that can

cause a project to go sour. Flash’s com-

plexity can result in “two-day” projects

taking two weeks, database access

becoming nearly impossible, and file

sizes that are daunting. I’ll talk about

some of the methods I’ve used to over-

come these types of problems in a site

I’ve recently developed, www.getfresh

fruit.com. 

Get Your Fresh Cut 
Fruit Here

www.getfreshfruit.com is a project I

worked on through my company, Balance

Studios (www.balancestudios.com), and

Lindsay, Stone & Briggs (www.lsb.com)

for Chiquita Brands, Inc. (www.

chiquita.com). The purpose of this Web

site was the introduction and launch  of

Chiquita’s newest product innovation,

Fresh Cut Fruit. Targeted at females

between the ages of 25 and 54 who are

concerned about their health, love fruit,

appreciate convenience, and are “on the

go,” the Fresh Cut Fruit site required a

friendly, engaging, and interactive user

interface. The site’s back-end features

included a searchable and updateable

store locator as well as an e-mail contact

form. This interactivity builds the cus-

tomer loyalty desired by Chiquita.

Immediately, this seemed like a great

candidate for Flash. Fun, interactive, and

integrated user interfaces are certainly

Flash’s forte. Developing the site in Flash

also had some challenges, such as keep-

ing the file size to a minimum (large

product images were part of the project

requirements), and, more importantly,

staying within our limited timeline for

site development. As I will explain, by

maximizing the efficiency of routine

Flash tasks, such as animations and data

access, I was able to give www.freshcut

fruit.com an intriguing front end in the

appropriate time span.

What Happened to My
Timeline?

Whether it’s loading functions, button

rollovers, or text effects, nearly every project

using Flash involves some type of animation.

The traditional method of animating in Flash

is accomplished using the timeline and

motion tweens with numerous keyframes

and a small amount of ActionScript. For the

Fresh Cut Fruit site, however, I chose to use a

different method of animating: ActionScript-

based MovieClip tweening. 

Unlike traditional Flash animations,

ActionScript-based tweens are accom-

plished without ever using the timeline.

In fact, these tweens do not even require

a MovieClip on the stage, just some

clever coding. The lack of keyframes in

ActionScript-based tweens make the

Flash animations much easier to update

as a project evolves. The developer is also

given much more control over properties

of the tweens, such as easing and the

ability to react to the completion of the

animation.

To accomplish ActionScript tweening

for Fresh Cut Fruit, the “MovieClip

Tweening” prototype by Ladislay Zigo

was used. This Flash extension is available

at http://laco.wz.cz/tween/. The exten-

sion provides the ActionScript classes

necessary to accomplish ActionScript-

based tweening without having to write

any of the movement classes used to

accomplish the tweens. The user-required

documentation for this extension is

extremely thorough, making the exten-

sion much easier to use than many of the

other tweening-class alternatives.

The most essential method in this pro-

totype is the tween function. Using just

instancename.tween(property, value,

duration, tweenType, delay, callback);

properties of a MovieClip, such as posi-

tion or alpha, can be tweened for a dura-

tion of time. The tweenType of the ani-

mation can be set to a variety of options,

ranging from an elastic ‘bounce’ to a sim-

ple linear tween to produce highly con-

trollable animations with great “feel.”

In the Fresh Cut Fruit project, these

tweening classes were used to create the

navigation buttons as well as the loading

functions’ fruit animations. For example,

to create, place, and animate a series of

top-level navigation buttons, the follow-

ing ActionScript could be used:

Function PlaceButtons()

{

// create button array

var x;

buts = [];

buts[0] = {label:”6oz Cup”,

data=”6oz.swf”};

buts[1] = {label:”12oz Cup”,

data=”12oz.swf”};

buts[2] = {label:”24oz Bowl”,

data=”24oz.swf”};

buts[2] = {label:”32oz Tray”,

data=”32oz.swf”};

buts[3] = {label:”64oz Tray”,

data=”64oz.swf”};

// attach the buttons, apply the

label, and create the tween

for (x=0; x<buts.length; x++)

{

var nn = “nb” + x;

attachMovie(“navbut”, nn, 100+x,

{_x:50, _y:50+(x*20), _alpha:0,

myLabel:buts[x].label,

myMovie:buts[x].data});

this[nn].tween([“_x”, “_alpha”], [55,

problem solving

Grab Hold of the Vine and 
Swing Over the Pitfalls

How to deliver interactive Flash sites efficiently

by ryan moore

t



8 • 2004 MXDJ.COM • 19

100], 1, “easeoutelastic”, x*.2,

null);

}

}

Initially in this script, an array is

declared, which holds the data used to

create the buttons, followed by a for

statement that loops through the array,

places the buttons, and sets some prop-

erties, which gets them movin’. Let’s

break down the last line in the for state-

ment, the implementation of the

ActionScript-based tweening:

this[nn].tween([“_x”, “_alpha”], [55,

100], 

This segment declares that we will be

tweening the _x and _alpha properties of

the newly attached MovieClips from their

initial values of 50 and 0 (which we deter-

mined in the previous line), to 55 and

100, respectively. 

1, “easeoutelastic”,

The “1” sets the period of the tween

to one second. Note that the tweening

prototypes are based on time instead of

frames. “easeoutelastic” is the easing

equation used on the MovieClips. Instead

of tweening straight to the point, they’ve

got a bit of “elastic bounce,” just for effect

(thank Robert Penner, www.robert

penner.com, for these great functions). 

x*.2, null);

The next property is the amount of

time each MovieClip will wait before

starting its tween. In this case, we don’t

want each button to start at the same

time, but to “flow in” from top to bottom.

The last property, callback function, is set

to null, but could be directed to a func-

tion that would execute when the but-

tons complete their motion.

By using ActionScript-based tween-

ing in this project, the navigation menu

was created without a MovieClip on the

stage or a tween on the timeline. Because

of this, the navigation menu and the

“feel” of the buttons could be quickly

updated, allowing much less develop-

ment time on the entire site while also

preparing the site for future updates or

unforeseen revisions (adding and remov-

ing pages DOES happen!), simply by

changing just a couple lines of code.

Searching for Stores? Use
FlashOrb

One of the primary challenges in any

Flash-based project is transferring data-

base stored information and server-side

logic to the Flash front end efficiently. A

number of options exist for Flash-to-serv-

er communication, such as Web service

components, the XML class, the LoadVars

class, and the FlashOrb. Because develop-

ment time was a major factor in this proj-

ect, Web services and the FlashOrb were

my two most likely choices. Due to its

speed, low overhead, and ease of use, the

FlashOrb turned out to be my selection. 

FlashOrb, as seen in previous issues of

MXDJ, is a technology built by the

Midnight Coders (www.flashorb.com),

based on Flash Remoting, which facili-

tates client-side Flash to server-side .NET

or Java communication. The FlashOrb, as

compared to Macromedia Web service

components, is faster and more light-

weight. In recent benchmarks, the

FlashOrb has proven to be up to three

times faster than SOAP-based communi-

cation when passing complex data types. 

When considering overhead, both in

file size and client-side memory alloca-

tion, Web service components also fall

dramatically short of the FlashOrb. Web

service components single-handedly add

nearly 39KB to a Flash movie’s file size,

whereas FlashOrb components add only

about 9KB. Web service components also

appear to have significant memory allo-

cation issues, whereas the FlashOrb uses

an extremely small amount of client-side

memory. 

In the Fresh Cut Fruit project, a

searchable store database was required,

as well as a database-driven contact

form. To accomplish this on the server

side, I selected Microsoft SQL Server and

C# .NET. The SQL server contains tables

that house Fresh Cut Fruit’s store data-

base as well as its contact information.

The back end consists of a .NET class,

FreshFruit.BgFiles. I won’t go into great

.NET detail, but here are a few of the

methods used for the site:

public store[] GetNearestStores(int

zipcode)

This method is used in the “Store

Locator” and takes a zipcode from the

Flash client and, using a custom zipcode

distance class and SQL queries, returns an

array of “store” structs to Flash. This pass-

ing of complex data types would con-

sume many resources using Web services,

and would involve intricate parsing using

the Flash XML class, but is no problem

using FlashOrb.

im
a

g
e

 I



20 • MXDJ.COM 8 • 2004

public string[]

GetStateStores(string state)

The GetStateStores method

receives a two-letter state

abbreviation from Flash and

returns an array of store names that

exist in the requested state. This

method is used by the “Store

Locator” page to display, for the

user, a list of stores that carry the

Fresh Cut Fruit product in their

state.

public string SendMailTo(string

emailto, string emailfrom, string

title, string message, string pw);

SendMailTo is simply a server-side

e-mail script (using the

OpenSmtp.Net component) that

sends an e-mail to a specified recipi-

ent with a specific title and message.

This method is used in both the “Let’s

Chat” contact form and the “Send to a

Friend” form.

Great, but what’s the use of all these

server-side methods if we have no easy

way of accessing them? Luckily, execut-

ing these methods using FlashOrb is as

easy as the following, calling the

GetNearestStores method:

// First, set up the Remoting

Connection:

var orbConn = NetServices.cre-

ate

GatewayConnection

(“remoting.aspx");

// Creating the Class Object

var service =

_root.orbConn.getService

("FreshFruit.BgFiles", this);

// Calling the Method

service.GetNearestStores

(Number(tbZipCode.text));

// Receiving the Result

function

GetNearestStores_Result(res) {

// Handle the results

// Results will be in the

form of a multi-dimensional

array

}

I won’t go into great detail on

the FlashOrb methods (see Joe

Orbman’s article in the May 2004

issue of MXDJ), but essentially,

the .NET server-side classes can

be called using only three lines of

code and the responses require

no parsing! Server-side access

functions from Flash couldn’t be any

quicker or easier to develop.

It is by using these asynchronous

database calls that one of the great user-

experience benefits of Flash is realized –

user interactivity. When the user runs a

search on the store database, he does

not lose control of the interface or get a

screen refresh. Instead, after a very short

load, the user is presented the search

results and taken to the next step on the

same page. This progression causes

much less confusion for the site user,

and, in this case, makes the store data

much more accessible and fun to find!

Although this is just a sampling, these

methods contributed to making the

www.getfreshfruit.com site a success, based

on timeline, file size, and user interactivity.

Macromedia Flash provides developers with

a tremendous opportunity to merge user

interaction with technology, and by using

the right tools, these low-bandwidth, data-

base-driven, and interactive Flash sites can

be delivered efficiently. 

Ryan Moore is the lead software archi-

tect and a principal of Balance Studios

Inc. (www.balancestudios.com) as well

as epicsoft, Inc. (www.epicsoft.net) of

Green Bay, WI. Ryan is a C# program-

mer and Certified Macromedia Flash

Developer. More of Ryan's articles can

be found at his personal weblog,

www.rymoore.com.

im
a

g
e

 I
I

Java for ColdFusion Programmers, the five-day
Hal Helms, Inc. training class is designed for
ColdFusion programmers; no previous Java
experience is needed. You'll learn how to think in
objects and program in Java.

For class information and registration, 
come to halhelms.com.

“I was totally intimidated by Java, but I
knew I had to learn it. Your class taught
me what I honestly thought I couldn't be
taught.“ - Sharon T

Java for
ColdFusion 
Programmers?





of Web Services
and Flash

With Flash’s ability 
to create rich, engaging, and 

fully interactive front-end interface 
environments and Web services being able 

to offer data in a standardized, easy-to-work-
with format, the possibilities of what can be 
accomplished with these two technologies are 

endless. But before the “how” is covered, 
it’s important to know the “what” 

and the “why.”

by david vogeleer

Evolution 
The

22 • MXDJ.COM 8 • 2004



What Is a Web
Service?

A Web service is

exactly what it says; it’s

a service being provid-

ed on the Web. So

what services does a

Web service provide?

A Web service’s goal

is to provide raw data

in well-formed XML

format to any applica-

tion that makes a

request to it. That may

not make sense by itself,

so here is exactly what a

Web service does.

A Web service sits on a

server, much like any server-

side page, and when a request is

made to it, the Web service will

perform a desired task, and return

data in the form of XML. XML is a

W3C standard way of packaging

data and is a language that nearly

any application can read because

it is, in fact, not a language at all,

but a well-structured docu-

ment containing raw data.

And Web services can pro-

vide data for such things

as weather and stock

information, and can

even be used to trans-

late text into other lan-

guages, as you will see

in a later example.

So, that is what Web

services are and what

they do, but that doesn’t

explain why anyone should

use them.

Why Use a Web Service?
Before Web services were so preva-

lent on the Web, data consumption was a

tricky business with everyone having

their own ideas of how data should

be formatted and returned. If

you wrote your own middle-

ware to control how the

data was being returned,

it wasn’t too bad to

work with, but if some-

one else wrote it, you

would have to do a lot

of guesswork, and

patch things together

until you got the results you wanted.

But with Web services, the format of

the data is already known: XML. And

because Web services are standard, the

results will be consistent across nearly all

Web services. All you need to know is

what the data being returned is, and how

to work with XML.

Working With XML 
Data in Flash

Before you jump right in and connect

to Web services in Flash, you should

understand how to walk through an XML

document in Flash using the built-in XML

object.

To use the XML object with Web ser-

vices, you pass the load method of the

XML object, the path to the Web service,

followed by a slash, and then the name

of the Web method being called. It looks

a bit like this:

myXML.load(“http://www.where-

ever.com/myWebService.asmx/myWebMethod

”);

Enough of the academics; here is a

short example using the XML object to

consume a Web service that will display a

new tip about XML every day:

1. Create a new Flash document with two

layers: “actions” & “content”.

2. Select the first frame of the content

layer, drag a TextArea component onto

the stage, give it an instance name of

xmlTip_ta, and size it to 200x100.

3. Now switch to the actions layer and

open up the Actions panel in the first

frame and place these actions in it.

var myXML:XML = new XML();

myXML.ignoreWhite=true;

myXML.onLoad=function(){

xmlTip_ta.text =

this.firstChild.firstChild;

}

myXML.load("http://www.xmlme.com/WSDai

lyXml.asmx/GetXmlDailyFact");

What this code does is to first create

the XML object into which we are going to

load the Web service. We then turn on the

ignoreWhite property so that when we

parse the object it doesn’t count white

space as a node. After that, we create the

callback for when data loads into the XML

object. At that point, we set the text of our

TextArea component to the tip being

returned. Finally, we load the Web service

in using the GetXmlDailyFact Web method,

which is part of the Web service we used.

Go ahead and test the movie, and you

should see something like Image I. Using

the XML object is a good way to get start-

ed with Web services.

Although there was not much data

being returned, we still had to parse the

XML (firstChild.firstChild) because the

data coming back was in raw XML format,

and looked something like this:

<?xml version="1.0" encoding="utf-8"?>

<string

xmlns="http://xmlme.com/WebServices">

This is where the tip would be.

</string>

Even though that example worked,

using the XML object isn’t always the eas-

iest way to work with Web services, espe-

cially if large sets of data are being

returned.

But before we revisit this example, we

need to go over three things that will

make connecting to Web services quick

and easy: data binding, the

WebServiceConnector component, and

the Web Services panel.

Data Binding
Data binding is a Flash 2004

Professional feature that allows seamless

data integration between components.

With data binding, you can link a proper-

ty of component A to a property of com-

ponent B, and when a component A

event is triggered, (in this case, when the

Web service sends back data), compo-

nent B will automatically be updated

without any ActionScript required.

In the case of the next few examples,

component A will be represented by the

WebServiceConnector component. Using

data binding, when this component

receives data back, it will automatically send

the results to the other components to

which it is bound. But before you can data

bind it, here is a brief description of what

the WebServiceConnector component is

and what it does.

The WebServiceConnector
Component

The WebServiceConnector compo-

nent is a Flash 2004 Professional compo-

8 • 2004 MXDJ.COM • 23



24 • MXDJ.COM 8 • 2004

nent designed to easily and quickly con-

nect to Web services on the Web. To use

it, simply drag it onto the stage, set the

URL for the Web service, and call the trig-

ger method on the component to make it

connect to the Web service.  

And you don’t have to maintain a list

somewhere on your computer to keep

track of all of your Web services and how

they work. You can store them right in

Flash using the Web Services panel.

The Web Services Panel
With the release of Flash MX 2004,

Macromedia included a very helpful panel in

the mix, the Web Services panel. It’s an easy

way to keep track of all of the Web services

with which you are working or experiment-

ing. To open it, go to Window/Development

Panels/Web Services.

You will see two buttons at the top,

the Define Web Services and the Refresh

Web Services buttons. The former will

add Web services and the latter will

refresh all the information with regard to

the current Web services in the panel.

The great thing about the Web Services

panel is that it will keep track of all of your

Web services. It will also display all of the

Web methods for each service, with details

such as the parameters that are required to

be sent with their prospective data types

as well as the results being returned. The

Web Services panel finds this information

by examining the WSDL (Web Service

Description Language) that all Web servic-

es have. Here is the link to the WSDL with

which we have already worked:

www.xmlme.com/WSDailyXml.asmx?WSDL.

Now you have seen the WSDL; you

should add it to the Web Services panel by

pressing the Define Web Services button.

The Define Web Services pop-up will

appear. Then, use the Add Web Service but-

ton to create a new spot in which to put

the link to the Web service. Place the full

path to the WSDL and press OK. After that,

the Web Services panel will load the WSDL

in (if you are connected to the Internet) and

all the Web methods with their specific

details can be visible within the panel as

seen in Image II. The Web Services panel is a

great way to keep track of all of your Web

services and their Web methods.

Another great thing about adding Web

services to the Web Services panel is that

the WebServiceConnector component will

automatically be able to list the Web meth-

ods for a particular Web service in the

parameters. Also, when you data bind

components, you can bind them directly

to the parameters of a Web method and

even the results of the Web method.

This example will use the same Web

service we just used, but this time we will

use the WebServiceConnector compo-

nent and some data binding techniques:

1. Create a new Flash Document with

two layers: “actions” & “content”.

2. Select the first frame of the content

layer and drag a TextArea component

onto the stage, give it an instance

name of xmlTip_ta, and size it to

200x100.

3. While still in that frame, drag an

instance of the WebServiceConnector

component onto the stage, give it an

instance name of “myConnector”, set

the WSDLURL to “http://www.xmlme.

com/WSDailyXml.asmx?WSDL” and set

the operation parameter to

“GetXmlDailyFact” (see Image III). Use

the Properties panel to set the param-

eters of the WebServiceConnector

component.

4. With the WebServiceConnector compo-

nent still selected, open up the

Component Inspector panel by going

to Window/Development Panels/

Component Inspector, select the

Bindings tab, press the add binding

button, and you will see two options

(see Image IV):

•   params:Object

•  results:String

5. Select the results:String option and

press OK. You will see a binding in

the Component Inspector, but it

isn’t bound to anything yet, so now

we have to bind the results of the

Web service to the TextArea compo-

nent.

6. While the Bindings tab is still up, and

the newly created binding is still

selected, select the Bound To field and

a magnifying glass will appear at the

end of the field. Select it and the

Bound To pop-up will appear (or you

can double-click the field itself ).

7. In the Bound To panel, all of the com-

ponents to which you can bind will be

visible, but in this case, select the

TextArea component, and the bind-

able properties will appear in the

Schema location window, which is the

text property. Select the text property

and press OK (see Image V).

Now the results of the Web service are

bound to the TextArea component, so

the final step is to tell the WebService-

Connector to go out and get the data.

8. Select the first frame in the actions

layer, open the Actions panel

(Window/Development Tool/Actions),

and place this line of code in:

myConnector.trigger();

Now you can test the file, and provid-

ing you are connected to the Internet, a

tip about XML should appear in the

TextArea component.

im
a

g
e

 I

im
a

g
e

 I
II

im
a

g
e

 I
I



So far, all we have done is receive

data from a Web service. The next step is

to send some data to a Web service and

collect the results.

For the next example, you will need

to add this Web service’s WSDL to the

Web Service panel: www.aspxpressway.

com/maincontent/webservices/piglatin.a

smx?WSDL. 

This Web service has a Web method

called toPigLatin with one parameter,

textToTranslate, which is a String data type. It

takes the string and translates it into Pig Latin

and then returns the translation as a string.

So, if you have a sentence just like

this, it would read like this: So, if you ave-

hay a entencesay ustjay ikelay isthay it

ouldway eadray ikelay isthay.

Here is an example that will create a

small application using the Pig Latin

translator Web service:

1. Create a new Flash document with two

layers: “actions” & “content”.

2. In the first frame of the content layer,

drag an instance of the TextArea com-

ponent onto the stage, give it an

instance name of “translate_ta”, and

change its dimensions to 250x130.

3. Now drag an instance of the Button

component onto the stage under the

Text Area component, give it an

instance name of “translator_butn”,

and change its label parameter to

“Translate”.

4. Next, drag an instance of the

WebServiceConnector component onto

the stage, give it an instance name of

“transCon”, and set its WSDLURL param-

eter to the Pig Latin Web service:

“http://www.aspxpressway.com/main-

content/webservices/piglatin.asmx?W

SDL”, then set the operation parameter

to “textToTranslate”.

5. With the WebServiceConnector still

selected, open up the Component

Inspector panel, select the Bindings

tab, and press the Add binding button

(see Image VI). The first binding will be

the text that is being sent to the Web

service, so select textToTranslate:String,

and press OK (see Image VII).

6. With the new binding selected, dou-

ble-click the Bound To field and in the

Bound To panel, select the TextArea

component, and hit OK.

7. Now create another binding, select

results:String, and press OK.

8. Select the Bound To field again, and

again bind it to the TextArea compo-

nent and press OK. What these bind-

ings do is take data from the

TextArea component, send it to the

Web service, and then put the

results back in the TextArea compo-

nent. The last step is to put the trig-

ger within the click event of the but-

ton.

9. Select the first frame of the actions

layer and place this code in:

translator_butn.clickHandler=func-

tion(){

transCon.trigger();

}

This code creates an event callback

for the click event of the button.  Because

the information being sent and received

from the Web service is bound to the

TextArea component, everything else is

done automatically.

You can test the movie now, by typ-

ing anything you want in the TextArea

component, then translating it to Pig

Latin.

And if you still want to use XML

instead of the WebServiceConnector

component, remove that component and

replace the code in the actions frame

with this:

//create the XML object

var myXML:XML = new XML();

//ignore the white space

myXML.ignoreWhite = true;

//create the path to the Web service,

// and append the Web method,

// and parameter to the end

var thePath:String = "http://www.aspx-

pressway.com/maincontent/webservices/p

iglatin.asmx/toPigLatin?textToTranslate=";

//create event for the button

translator_butn.clickHandler=func-

tion(){

//get the text

var myString_str:String = transla-

tor_ta.text;

//call the Web method

myXML.load(thePath+myString_str);

}

//collect the results

myXML.onLoad=function(){

//display the results

translator_ta.text=this.firstChild.chi

ldNodes[0].nodeValue;

}

This code creates the XML object and

sets it to ignore white space.  Then, a String

variable is created to hold the full path to

the Web service as well as the Web

8 • 2004 MXDJ.COM • 25

im
a

g
e

 V

im
a

g
e

 I
V

David is the Chief

Programming Officer at

EMLlabs.com and writer

for FlashMagazine.com.

He has been working in

Flash since version 4,

contributed to 2 Flash

books and is a certified

Flash developer and

instructor. missing-

link@emllabs.com



image VII

method, and the parameter name for the

Web method. Next, it creates the event

callback for the button. Within the callback,

a variable is created to hold the text from

the TextArea component,  which loads the

XML with the main path, and then the vari-

able holding the info string is used to

translate. Finally, a callback event is created

for when the results load into the XML

object, and is displayed back into the

TextArea component.

Summary
As you can see, tying into Web serv-

ices with Flash is quick and easy using

the WebServiceConnector component

and data binding, or you can use the

XML object for more hands-on control.

You can also use Flash Remoting to cre-

ate a more streamlined connection

between Flash and the Web service. And

don’t forget, whenever you want to start

working with a new Web service, add

it to the Web Service panel to keep

track of it.

Here are a few links to collections

of Web services, as well as a few popular

ones I have used.

• WebserviceX.NET – Free Web Services

Provider:

www.webservicex.net/WS/default.aspx

• XMethods: www.xmethods.com

• Application for Amazon Web Services

Developer’s Token:

https://associates.amazon.com/exec/p

anama/associates/join/developer/appli

cation.html

• Google Web API Service:

www.google.com/apis

• Macromedia XML News Aggregator

(MXNA) Tools:

www.markme.com/mxna/tools.cfm

im
a

g
e

 V
I





FORM 
In the last issue of MXDJ (Vol. 2, issue 7), we discussed the Extrusion tool. This

time we’ll explore other drawing methods.  Some modeling effects can be

handled quickly in FreeHand with the Extrude tool, but gradient fills and creative

blends from one shape to another are sometimes the best bet. The Extrude tool

does a super job with text, but it has severe restrictions when it comes to

compound shapes, such as the lumps and facets on  ketchup

or Coca-Cola bottles as they become round for the label.

The project can be done, but you must stack several

different extrusions into one final drawing, which

can be taxing on your patience.

by ron rockwell

28 • MXDJ.COM 8 • 2004



URETUTUTUATATATFEAATATAT EEE RRRTTFEAT RA EEA
T 2PART

8 • 2004 MXDJ.COM • 29

Before

extrusions

found their

way into

FreeHand, we

did it the old fash-

ioned way by plot-

ting points and paths

and filling them with

blends and gradient fills. To

become proficient in realistic

2D rendering, you must learn to

think differently about what you see.

Once you see how highlights and shad-

ows are formed on an object, it’s a simple

matter of recreating the effect with vec-

tor objects. An example of that style of

thinking is shown in Image I, in which

blends, gradients, and other vector

effects were used.

Beyond rendering, FreeHand MX also

gave us bitmap effects to aid with finish-

ing touches. Like cayenne pepper, a little

goes a long way, but definitely kicks the

end result up a notch. Drop shadows,

glows, transparency, and bevels certainly

add a lot to a drawing, but careless appli-

cation can render the job unprintable or

amateurish.

Many factors can influence your

choice of drawing methods. For instance,

file size may be important to you in one

job, while a crisp, sharp image is of

utmost significance in your mind for

another project. You may be exporting

the drawing to Flash or Fireworks for

use on the Web, and then again, the end

result might be in a printing project. I’ll

provide a few basic modeling techniques

and explore FreeHand artwork as it

impacts other programs and the printing

process.

Blending Objects to 
Create Form

The ability to blend or morph one

object into another has been with us for

a long time in FreeHand. Just about every

tutorial or lesson about blends will give

an example of a star or other geometric

shape being morphed into another shape

or a letterform. That’s all well and good

for a demonstration, but hardly represen-

tative of what you can do with the tool.

Frankly, I haven’t seen the need for too

many star-to-square blends in advertis-

ing, editorial, or Web illustrations.

A far more likely use of a blend is to

blend from one shape in one location to

a modified duplicate of the same in

another location – for instance, a white

star blending to a bright red star on a

white background would make the star

look as if it is zooming out of the back-

ground. FreeHand’s ability to attach a

blend to a path allows you to make that

star zoom on an arc or zig-zag path.

However, another use of a blend is to

add form to an object. Start by creating

an object with a base color. Then create

an area of highlight or shadow that

blends into the base color. Inspect Image

II to see how it all comes together. A sim-

ple ellipse was drawn for the sphere

shape. Areas around the proposed high-

lights and shadows are drawn and given

the base color. Smaller ellipses and

shapes are made from clones of the larg-

er shapes for the lightest highlights and

the darkest shadows. All that’s left to do

is to create highlight colors (usually

white) and shadow colors (adding a com-

plementary color or black to the base

color). Remove all strokes and blend the

shapes. The number of steps in the blend

– and how visible the banding is – can be

changed in the Object panel. If colors are

similar, fewer steps will be created; dis-

similar colors need more steps to create a

gradient to the blend. The higher the

number of steps in a blend, the more

work the computer and printer have to

do, so don’t go more than 25 or 30 steps

unless the rendering is extremely sensi-

tive.

The circles and numbers on the balls

aren’t difficult at all. Set the number in a

bold font and convert it to paths (Text >

Convert to Paths). Center the number

inside the circle and group them, then

place the circle/number roughly where

you want it to be on the ball – rotate the

circle/number if you wish. Then use the

Fisheye Lens Tool. Double-click the tool’s

icon (in the same group as the Extrusion

and Perspective tools) to bring up its dia-

log box. Make adjustments for a 100%

Convex distortion (see Image III), and

drag an ellipse with the tool – over the

existing ball, with the circle/number

selected – just as if you were dragging

another ball. When you release the

Fisheye Lens Tool, the circle/number will

be distorted. If the result is too large, do

an Undo, resize the circle/number, and

try again.

Name your colors for base and shad-

ows. That way, you can clone a complet-

ed ball and use the Find & Replace func-

tion to create differently colored balls

quickly. The stripe on the 11 ball is noth-

ing more than a clone of the red ball,

with a lighter base color (6% Cyan, 6%



image I

Black). The shadow is a little darker. An

ellipse was drawn for the top edge of the

stripe, cloned, and moved down for the

bottom of the stripe. The ellipses were

split at their left and right apexes  and

connected/closed. That shape was used

to crop the stripe out of the white ball.

Note that the 8 ball is not simply black; it

is 79C 73M 60Y 83K to be able to show

reflections, shadows, and highlights.

Reflections are simple clones of adja-

cent balls that have been reduced (scaled

down) and had the Fisheye Lens Tool

applied. Multiple reflections on a given

ball were done all at one time. The reflec-

tion of the handsome artist in the 8 ball is

a jpeg that has been traced with the

Trace tool (an 8-color trace), and fish-

eyed as well. All of the reflections were

given a Transparency effect from the

Object panel. That adds the color of the

reflected image to the base, shadow, and

highlight areas all at once. 

Gradient Fills
As the name implies, a gradient fill is a

fill that has a gradation of colors. To apply

a gradient fill to a selected object, it’s

only necessary to click the Fill item in the

Object panel or, if the object has no fill,

click the Add Fill button at the top of the

Object panel. The FreeHand default is a

Basic fill, which means a solid color of

your choosing. For a gradient fill, click the

Fill Type drop-down menu and choose

Gradient from the list. The Object panel

changes its appearance to show all the

adjustments you can make in the gradi-

ent, as seen in Image IV. 

Gradient types are:

• Linear: is the default and applies a

smooth transition in color from one

side of the fill to the other. It is the

workhorse and most used gradient.

• Logarithmic: similar to linear, only

instead of a straight-line transition, a

logarithmic formula is applied that

causes a more abrupt – or gradual –

change in color, depending on how it’s

applied.

• Radial: gradates from the center to the

outer edge of the fill. It’s very useful for

adding tone to spheres.

• Contour: similar to a radial gradient,

except, instead of radiating in a circular

pattern, the gradation works from the

outer perimeter of the object and fol-

8 • 200430 • MXDJ.COM



im
a

g
e

 I
I

im
a

g
e

 III

8 • 2004 MXDJ.COM • 31

lows that shape inward. It’s good for a

domed or smooth beveled appear-

ance.

• Rectangle: applies a mirrored linear

gradient along two axes.

• Conical gradients: creates cone model-

ing, but, if used creatively, can give

even flat objects form and tone.

Image V compares the various gradi-

ents, color ramps, and the positions of

the gradient handles in one example of

each gradient. The Linear and

Logarithmic gradients share the same

color ramp – notice how differently the

gradation is on each of the objects. 

Each gradient has a single or double

gradient handle. To see the gradient han-

dles, you must first select the object, then

click the Fill item in the Object panel. The

Pointer tool or Subselect tool must be

active in order to see or use the gradient

handles. The central point of the gradient

is marked by a small circle on one end of

a dashed line, ending in a larger black

square. The square may be moved in any

direction and stretched to any length.

The gradation will comply to the adjust-

ment. By selecting the central point, you

can move the gradient to any location.

Double gradient handles are inde-

pendent from each other and can be

maneuvered to develop many types of

gradients. Colors are introduced to the

ramp by dragging and dropping a color

swatch from the Swatches panel, the

Mixer/Tints panels, or a color selected

with the Eyedropper tool. Move the color

boxes left or right to adjust their position

in the gradient. To remove a color, simply

drag the color box off the ramp. 

If you have a set of colors arranged in

a gradient, you can drag the fill onto the

Styles panel. Later, you can apply the

style to a different object, then change

the gradient type.

Beyond six different types of gradi-

ents and countless variations with color

placement and control handles, there are

four more options to fine-tune your gra-

dient fill.

• Normal: provides the types of gradi-

ents as seen in Image V.

• Repeat: allows you to enter a number

of iterations of the gradient. The gradi-

ent fill area will then be divided by

your number, and equally-sized gradi-

ents will fill the area.

• Reflect: runs the gradient to its end –

with the number of iterations you

input – then repeats itself in the

reverse direction.

• Auto Size: creates the gradient as

usual, but doesn’t provide control han-

dles.

A great way to make a multicolored

gradient is to make a simple gradient in

one object, and have another, similar gra-

dient in a different object with a different

color scheme. Blending between the two

objects creates a blend of the gradients.

As you know, blends can be attached to

paths, but with a blend of gradients this

technique quickly falls apart.

Xtra Effects

Several years ago, FreeHand intro-

duced Xtras that would apply a shadow,

embossing, blend, or smudge. These

effects are shown in Image VI. They’re

really easy to use, but are not in the same

league as the Bitmap Effects you’ll find in

the Object panel. These effects are pure

vector so you don’t have to worry about

document resolution, thereby eliminat-

ing possible printing problems. With

planning, the effects provide exactly the

3D effect you’re after. Each of these Xtras

has a button you can drag to your tool-

bar if you use them enough (Windows >

Toolbars > Customize > Xtras). All but the

Blend have dialog boxes that give you a

few options.

• Emboss Xtra: gives you the choice of a

hard or soft embossing. You can

choose the offset and the amount of

highlight or shadow, expressed in per-

centage of a tint of the object’s color. 

• Smudge Xtra: allows you to select the

end fill and/or stroke colors. When you

select this Xtra, the cursor changes to a

pair of fingers. As you drag, a keyline

preview shows where the smudge will

stop. Several iterations of the original

object are blended from the original

colors to the colors you’ve input –

which should be your background

color in most instances.

• Shadow Xtra: gives you the choice of

having a hard or soft edge, as well as a

zoom effect. You can input the offset

and ending colors or tints for each

effect, as well as the size of the ulti-

mate shadow.

• Blend Xtra: can also be achieved by

choosing Blend from the Modify >

Combine menu. This blend feature is



im
a

g
e

 I
V

image V

32 • MXDJ.COM 8 • 2004

different from the Blend Tool in the

main Toolbox, as you simply select two

or more objects and click the Blend

Xtra button to create the blend. With

the Blend Tool, you select one object

and drag to select subsequent objects.

If you create a blend with the Xtra, you

can modify the connection points by

clicking on the Blend Tool. 

Bitmap Effects
In direct contrast to the Xtra effects

above, bitmap effects for shadows,

glows, embossing, and so on are found

in the Object panel. However, there’s a

huge “but” in using them. First of all, the

effects are not vector, they’re raster or

bitmap objects consisting of dots or pix-

els. Next, these bitmaps are RGB. That

means they’ll look fine on-screen, but in

order to print they must be converted to

CMYK. Any spot colors you’re using in

the object will also be converted to RGB,

then reconverted to CMYK when print-

ing. The issue isn’t too complicated

because the program takes care of the

color space conversion, but it is your

responsibility to assure that the docu-

ment’s resolution is set correctly. A vec-

tor document will print sharply at any

output size. A bitmap will also print at

any size, but its sharpness depends on

the resolution that has been applied. It’s

extremely important if you’re going to

use bitmap effects that you change the

resolution of your document before

committing to print. That applies if

you’re just printing to your color laser or

going to a commercial printer. It’s not

difficult. With the object selected, go to

the Document panel and click on its

options icon in the top-right corner of

the panel. Drag down to Raster Effects

Resolution and release the mouse. A dia-

log box will open set to the default of 72

ppi (pixels per inch). Click on the drop-

down menu and change the resolution

to 300 ppi. Now you’re ready to print.

On the other hand, if you’re taking

the same document to the Web, set the

Raster Effects Resolution to 72 ppi. You

can go to File > Document Settings >

Raster Effects Resolution and make the

resolution changes for all raster objects in

the document. This approach gives you

the opportunity to select Optimal CMYK

Rendering, which bypasses your color

management settings. ALL of the colors

in your document must be CMYK. You

cannot have spot, or PMS, colors in the

document – convert them to CMYK

before selecting this option.

A further caveat is that when you do

pop the resolution up, your screen

redraw speed will slow to a crawl, espe-

cially if you have the Redraw

Preferences set to a high quality. Again,

it’s not a big deal. Just work with the

document set at 72 ppi. When you go to

print, switch to 300 ppi. The effects will

also impact your printing time. Oh yeah,

prepare to wait if you have a lot of

effects piled on top of each other. When

you think about how the program has

to interpret one effect on top of anoth-

er, on top of another, it’s a wonder that

anything prints at all. And sometimes it

doesn’t. I’ve gotten carried away on a

number of occasions and created a job

that choked the printer. Then, it’s a mat-

ter of picking and choosing the neces-

sary effects and trashing the rest.

As a fairly quick solution to the prob-

lem – if it’s a problem – you can drag a

selection around the drawing and select



im
a

g
e

 V
I

im
a

g
e

 V
II

im
a

g
e

 V
III

image IX

8 • 2004 MXDJ.COM • 33

Modify > Convert to Image. Be extremely

conscious of what you’re doing in this

step, because whatever is selected will be

converted into a TIFF file – a bitmap. No

more vectors! A small dialog box allows

you to choose the resolution and the

amount of anti-aliasing you want. Make

your selections, click the OK button, and

you have a raster image instead of vec-

tors. Depending on the complexity of the

drawing, you’ll have a shorter or longer

wait for the conversion. It’s important to

know that you’re basically getting a pic-

ture of what’s on the screen within the

bounding box of your selection. For

instance, say you have a circular shape

selected with text running up next to the

text. If you Convert to Image, the portion

of text that is within the circle’s bounding

box will be part of the new TIFF file. 

Applying Effects
With all the scary stuff behind you, it’s

a simple process to add a bitmap effect

to an object. Just select the vector or

bitmap object, or text, and click the Add

Effect button in the Object panel to

access the drop-down menu. Choose the

effect (shown in Image VII) you want and

make adjustments to it in the Object

panel. The panel configurations for the

Emboss and Drop Shadow examples in

Image VIII are shown in Image IX. The

effect you want is in your head and it’s up

to you to change the various options to

create that effect.

Bevel and Emboss can give you an

infinite number of inner bevels, outer

bevels, inset embossments, and raised

embossments. It’s a good effect to use for

a quick button shape, although you’ll be

more excited by what Fireworks can do

for you when it comes to Web buttons.

Blur gives your object a soft focus.

There are two flavors: Basic, which makes

the object fuzzy in a 1- to-10-pixel radius

that you input; and Gaussian, which gives

a foggy appearance. At higher levels, it

can make an object appear as if it were a

wisp of fog.

Shadow and Glow come in two flavors

each. You have your standard Drop

Shadow and an Inner Shadow. Both can be

adjusted as to color, width, angle of dis-

placement, and level of transparency. The

glows are Inner and Glow (which is outer),

and have the same adjustments as the

shadows, except displacement occurs radi-

ally from the center of the object, following

the object’s outline. The Glows could be

described as fuzzy inset paths, with nega-

tive numbers outlining an object and posi-

tive numbers creating an inline.

Sharpen and Unsharp Mask are usual-

ly seen in bitmap applications, but

FreeHand uses the same techniques on

vectors. The Sharpen effect increases con-

trast in a graphic, creating crisper edges

between color changes. There are three

types of Transparency: Basic, in which you

control how opaque or transparent a

graphic is (and therefore how much of an

underlying object shows through);

Feather transparency, which allows the

center of an object to be solid and the

edges to become transparent to the

degree you set in the Object panel; and

Gradient Mask, where transparency is

determined using the same gradient fills

as you would use in a nontransparent

object, except the object is more or less

transparent.

Using any of these effects can instill a

high level of believability in your draw-

ing. Just remember to keep it as simple as

you can so you don’t create an output

problem.

Summary
In this second of two parts about cre-

ating form with FreeHand MX’s tools, it’s

easy to see how simple it is to create

depth and reality in a drawing. Drawing

techniques can be simple blends, gradi-

ents, Xtras, or many other powerful tools

and features in the program. You’re only

limited by your own imagination and

willingness to explore and practice differ-

ent approaches. 



tend to keep myself 
available to help people 
with code and Web 
projects on a daily basis. It 
seems to be quite fruitful. 
The majority of the 
questions tend to refer to 
Actionscript 2.0 and/or 
object-oriented 
programming (OOP) in 
Actionscript 2.0. It has 
become the inspiration 
for this article.

I

34 • MXDJ.COM 8 • 2004

I’ll cover a few basics of

OOP in AS 2.0 and then jump

into creating a thumbnail class

to demonstrate duplicating MovieClips

with classes. Let’s jump straight into

some code! Here’s a basic class example.

myClass.as

1. class myClass {

2.//setup variables

3.private  var myText:String = “Hello

world”;

4.

5.//constructor function

6.function myClass(){

7. init();

8.}

9.

10.private function init(){

11. trace(myText);

12.}

13. }

Save the script as myClass.as. The file

name must equal the name of the class.

Jumping forward to line 6, you see the

constructor function. A constructor func-

tion is called automatically when the class

is instantiated. A constructor function isn’t

required; the compiler will create one

automatically if one is not declared. I use

constructors only when I need something

automatic to happen. In this case, I’ll have

the constructor call an init() method,

which handles the initial setup.



Beginning 

OOP 
in AS 2.0 

by john c. bland ii

8 • 2004 MXDJ.COM • 35

When this class is instantiated

in the Flash document, you’ll get

a “Hello World” trace, the value of

the myText variable set on line 3.

myText is a private variable.

Private variables are only avail-

able by the class in which they are creat-

ed. If the variable is needed outside of

the class, you could set it to public. One

important thing to remember when

declaring class variables is that the intial

value must be a constant. You don’t have

to set an initial value, but if you do, make

sure it’s a constant value (a text string,

number, boolean value, reference to

another variable, etc.).

class myClass{

private var yourText:String = “Hi”;

private var myText:String = yourText;

}

This is fine because the variable

yourText is set to the constant “Hi”. The

variable myText is set to yourText, a con-

stant, so myText is a constant. 

Class myClass{

private var yourText:String = “Hi”;

private var myText:String = _root.con-

tact_txt.text;

}

You will see in the following error: “A

class’ instance variables may only be initial-

ized to compile-time constant expressions.”

yourText is fine but myText is now set to a

textfield named contact_txt on the _root. 

Let’s integrate the example into a

Flash document. It’s very easy to inte-

grate this class. Create an empty Flash

document and put this on frame 1:



36 • MXDJ.COM 8 • 2004

myClassExample.fla

1. import myClass;

2. var blah:myClass = new myClass();

Test the file and you’ll see “Hello

World” in the Output panel. As soon as

the class is instantiated, the init() function

traces the myText variable. This class isn’t

very useful, but it’s a start. Let’s move into

a more in-depth example.

In the next example, we’ll create a

class to handle e-mail validation. There

are many ways to do e-mail validation

and I’m not proclaiming this as “the” way

to do it. It’s merely an example.

Validator.as

1. class Validator{

2. public function

email(email:String):Boolean{

3. var dot = 0;

4. var ext =

0;

5. var at = email.indexOf("@",0);

6.

7. if(at > 0){

8. dot = email.indexOf(".", at+2);

9. ext = email.substr(dot+1,

email.length);

10. ext = ext.length;

11. }

12.

13. if((email.length == 0) || (at == 0

|| dot == 0) || (ext < 2)){

14. return false;

15. }else if((at > 0) && (dot > 0) &&

(ext > 1)){

16. return true; 

17. }

18.}

19. }

validateEmail.fla

1. // frame 1

2. import Validator;

3. var blah:Validator = new

Validator();

4.

5.

trace(blah.email("john@jdevinc.com"));

//traces: true

6. trace(blah.email("john"));

//traces: false

Validator.as is a simple class with one

public function: email(). The function

accepts one string named email and

returns a Boolean specified by :Boolean

after the closing parenthesis in the method

signature. Lines 3 through 5 are simple but

crucial. Notice the word var before dot, ext,

and at. var makes the variables local to the

method. They’re local – think of local as

temporary – so they aren’t a part of the

class, meaning they can’t be accessed

outside of the email() method.

Without var, you’d have to specify

dot, ext, and at as class variables

(see myText variable in the exam-

ple). This gave me a world of trou-

ble when I first began developing

AS 2.0 classes.

Everything after the variable dec-

larations is a simple validation script. It

checks for an “@”symbol, a period, and

an extension (com, org, net, etc). Based

on what it finds, it returns true or false.

Now you have an e-mail validation

class. Test the test.fla file and you will

see the results in the results pane. 

Classes are also excellent to use when

duplicating objects on the stage. Without

using a class, you’d attach or duplicate

movie or on the stage, set properties for

each (could use a loop here), and set up cer-

tain methods (onRelease, onPress, etc.). It’s

very sloppy and not very controllable from

the standpoint of reusable code. Let’s

explore how using classes can improve your

workflow and help structure your applica-

tion or site with a duplication example.

Photo galleries seem to be pretty

common these days. We won’t create a

complete gallery. Our focus is on dupli-

cating MovieClips that can be used to

create a complete photo gallery. Pop into

Flash and let’s get started.

thumbnail.as

1. dynamic class thumbnail extends

MovieClip{

2.private var path:String =

"images/";

3.private var file:String;

4.private var info:String;

5.private var image_mc:MovieClip;

6.

7.function thumbnail(){

8. init();

9.}

10.

11.private function init():Void{

12. image_mc =

createEmptyMovieClip("img", 100);

13. this.info_txt.text = info;

14.

15. image_mc.loadMovie(path + file);

16. onRelease = release;

17. //onPress = release;

18.}

19.

20.private function release():Void{

21. trace(info);

22.}

23. }

This class file is pretty simple. The key

notes here are dynamic and

this.info_text. Because the class is

attached to a MovieClip in the Library,

making the class dynamic allows you to

access the objects inside the MovieClip

without specifying them as class vars. You

can think of this as putting the code

directly inside the MovieClip. If I took

dynamic off, I would have to target the

MovieClip timeline (_root, _level0, etc.),

then access info_txt – in this case, I would

definitely utilize a class var. 

The path variable holds the path of the

image. This too can be set up as dynamic,

in case you want to load images from mul-

tiple locations. For the sake of simplicity,

we’ll just load all images from the “images”

folder. file is the actual filename and info is

the text label for the image. Upon class



8 • 2004 MXDJ.COM • 37

instantiation, init() is called in the thumb-

nail() constructor on line 8. init() does all

the work. On line 12, we create an empty

MovieClip and save a reference in the

image_mc var. image_mc, which is only a

variable. This is not an actual MovieClip –

rather, it holds the reference to the

MovieClip. Line 13 sets the text of info_txt

textfield, which is already present in the

MovieClip. We then load the image into

the MovieClip referenced in images_mc

variable and set the onRelease and

onPress methods to the private function

release. By setting the onRelease method

to the release class method, we are basi-

cally saying “Call release whenever an

onRelease happens.” I commented out

onPress, line 17, to show you how multiple

methods can call one function. 

This class alone is capable of handling

a full-fledged gallery. In fact, I used this

class, with a few modifications, to resize

the images on a photo gallery currently

being used by a Fortune 200 company.

Now let’s put this class to use.

Open a new Flash document and do the

following:

1. Draw a 50x50 pixel square on the

stage. This will serve as the image

background.

2. Create a text field below the box, size it

to the width of the box, and give it an

instance name of info_txt.

3. Select the box and the text field.

4. Convert to a symbol by pressing F8 or

on the menu select Modify then

Convert to Symbol. 

5. Name it thumbnail, give it the

MovieClip behavior (default), and

check Export for Actionscript (under

the Advance options). 

6. Make the Identifier thumbnail as well

as the AS 2.0 Class to thumbnail. (This

is the name of our class; if you name

your class myThumbnails just change

this value to myThumbnails.)

7. Click OK.

8. Delete the object from the stage. It is

automatically added to your Library

(press F11 or select Window ->Library

from the menu).

Now we can get into the code for the

gallery. 

gallery.fla

1. var xVal:Number = 0;

2. var yVal:Number = 0;

4.

5. for(var i = 0; i < 21; i++){

6.attachMovie("thumbnail", "thumb" +

i, 1000-i, {_x: xVal, _y: yVal, info:

i+1, file: “pic” + (i+1) + “.jpg”});

7.

8.if(i != 0){

9. if(i%4){

10. xVal += 52;

11. }else{

12. xVal = 0;

13. yVal += 70;

14. }

15.}

16. }

The code is pretty short,

but, by using the class, it is

extensible. We start out by

creating the xVal and yVal vari-

ables. These vars are critical to

the layout. Next, we

start looping from 0

to 20 (arbitrary num-

ber) on line 5. Line 6

attaches the thumb-

nail MovieClip to the

stage, gives it the name

“thumb” + i (where i is 0, 1, 2, 3

and so forth throughout the loop)

sets the depth to 1000 (arbitrary number)

minus i, and passes MoveClip and class

properties in the initObject. The initObject

is the fourth parameter encapsulated in

brackets, see MovieClip.attachMovie() in

the Flash Help documents. 

When the movie is attached to the

stage, the thumbnail class is instantiated

because we set the AS 2.0 class linkage to

the thumbnail class. What we need to con-

centrate on is the initObject parameter we

pass: {_x: xVal, _y: yVal, info: i+1, file: “pic” +

(i+1) + “.jpg”}. _x and _y correspond to the

MovieClips _x and _y value. This is a com-

mon practice I use when using

attachMovie(). _x and _y receive their val-

ues from xVal and yVal, respectively, which

will change each loop iteration. info and

file refer to the class vars we created in our

thumbnail class. We set info to i+1 to give

us a number label, starting at 1 instead of

0, and file to “pic” + (i+1) + “.jpg” which will

ultimately give us: pic1.jpg, pic2.jpg, etc.

These values are saved in the class vars

and utilized by the init() method. 

Now the clip is on the stage and all val-

ues are set. The next part of the loop man-

ages the layout by changing the xVal and

yVal, as necessary. The first thing we do is

check to make sure i is not equal to 0. If i

doesn’t equal 0, we’ll do a second check. If

i modulo 4 is true, we increment xVal by

52. Modulo, from the Flash Help docu-

ments, calculates the remainder of expres-

sion1 divided by expression2. By using 52,

the next MovieClip attached will move

over one full thumbnail width and give it 2

pixels of column separa-

tion. If i%4 is

false, we’ll start a new row by setting xVal

back to 0 and incrementing yVal by 70

which gives 2 pixels of row separation. 

That’s it! The loop will continue until i is

no longer less than 20. You now have a

gallery of thumbnails. Click on any one of

the thumbnails and the clip’s info variable

will be traced (see the release method in the

class). Keep in mind this can be done several

different ways and you can actually turn this

into a powerful tool by adding dynamic

data via XML, remoting, Web services, or

any other data source. The beautiful thing

here is, if you want to add an animation to

the thumbnail, you simply script it in the

class or edit the thumbnail in the library.

Gotta love it! All examples in this article are

available at www.jdevinc.com/tutorials.

Acknowledgements
Most of all I want to acknowledge God, my

wife, my parents, and my brothers. Thank

you for allowing me time to work! Mad

Love! Big thanks to Michael Hagel, Jake

Stutzman, Flash and Multimedia Users

Group of Arizona (www.azflash.org), and

Phoenix ColdFusion Usergroup

(www.azcfug.com). 

John C. Bland

II is CEO and

chief developer

for JDEV Inc.

(www.jdevinc.com), a

Phoenix-based new

media firm providing

Internet consulting and

development services

for many companies

nationwide. John's

strong suit is application

functionality and he

loves utilizing a combi-

nation of Flash, Flash

Remoting, and

ColdFusion to build rich

Internet applications,

central applications, and

Web products. He cred-

its much of his growing

knowledge to the con-

tinued fellowship, sup-

port, and communica-

tion within the Flash and

Multiple Users Group of

Arizona and the Phoenix

ColdFusion UserGroup.

Look for new applica-

tions coming out around

the first of the year from

John and JDEV Inc.

mxdj@jdevinc.com



38 • MXDJ.COM 8 • 2004

indows, Macintosh, and

Unix have three different

ways of referring to a line

break. Windows uses two separate char-

acters – Carriage Return followed by Line

Feed – while Macintosh uses just Carriage

Return and Unix uses just Line Feed. To

complicate matters, the fonts generally

available on the platforms are different,

and accented characters are also coded

differently. While Director does its best to

help you cope with all of this diversity,

there are times when you need to take

matters into your own hands. This article

will show you how.

If you need to create a cross-platform

multi-user chat application, or if you need

to export and import text files that can

be used on either platform, then this arti-

cle is for you. You’ll be discovering:

• How much you can rely on Director’s

built-in font and character mapping

• How the various line break characters

appear on “the other platform”

• How to convert files to the format

used by the current platform, regard-

less of their origin

• How to create files that can be used by

your application on either platform.

You can find a Director 8.0 cast con-

taining a text conversion script and a

wrapper script for the FileIO xtra at:

• Windows:

http://nonlinear.openspark.com/

tutorials/macpc.zip

• Macintosh:

http://nonlinear.openspark.com/

tutorials/macpc.sit

fontmap.txt
When you type text into a Director

field or text member, Director knows the

platform on which you are working.

When you copy your movie or external

cast to the other platform, Director real-

izes that the platform has changed.

Director then uses its external look-up

table to convert fonts and accented char-

acters accordingly.

This look-up table is a text file called

fontmap.txt. Prior to Director MX 2004, it

appeared in the same folder as the

Director application itself. In Director MX

2004, you will find it in the Configuration

folder. In Windows, the fontmap.txt file

will open in NotePad. On a Macintosh, I

recommend that you use SimpleText or a

third-party application like BBEdit that

allows you to retain the Carriage Return

line breaks.

Mapping Fonts
The fontmap.txt file is divided into

two parts. The first part allows you to

define which Windows fonts to use in

place of particular Macintosh fonts, and

vice versa. As Image I shows, a number of

common mappings are already included.

You can adjust the size of the mapped

fonts if you so desire.

Mapping High ANSI
Characters

Computers don’t know about charac-

ters. They don’t understand anything

more complex than zero or one. All of the

characters that you can type into your

computer are coded as a series of zeroes

and ones. The binary number 11111111

corresponds to the decimal number 255

and for languages that use the Roman

alphabet, or certain variations of it, 255

codes cover most eventualities, with the

code 0 representing End Of File.

If you’re working in English, you may

only be concerned with the first 127

codes, which cover all the numbers,

punctuation, and non-accented letters.

ansi

Text on the Other Platform

Accent on ANSI
by james newton

w
im

a
g

e
 I



8 • 2004

Windows and Macintosh agree on how

these first 127 characters should be

coded. They disagree about the accented

characters and other special symbols.

Indeed, they don’t even agree on what

symbols to use.

Try the code in code I on both plat-

forms, and you’ll see how the results dif-

fer, as Image II illustrates.

The second part of the fontmap.txt

file deals with converting these high

ANSI characters from one platform to the

other.

Editing fontmap.txt
There are two main reasons why you

might want to edit the fontmap.txt file:

to add new fonts, or to squeeze as much

compression out of a Shockwave file as

possible. Generally speaking, you won’t

want to alter the character mapping sec-

tion.

If you want to use a non-standard

font, such as Apple Chancery on Mac OS

X, or on Windows, then you will need to

add your own mappings for these fonts.

Remember that you’ll need to add map-

pings in both directions.

Image IV shows a Director movie

opened in Word. As you can see, the

fontmap.txt file has been added to the

movie. In fact, the copy of the

fontmap.txt file alongside the Director

application is added to every movie you

create. If you’re adamant about creating

minimal DCR files, you may want to strip

out all unnecessary text: references to

unused fonts and unused high ANSI

im
a

g
e

 I
II

im
a

g
e

 I
I

im
a

g
e

 I
V

Editing 
fontmap.txt 

on Mac OS X

On a Macintosh, chances are that the

fontmap.txt file will be set to open in some

other application by default. On my machine, it

wants to open in CodeWarrior, for some rea-

son. If you don’t have CodeWarrior installed, it

will probably want to open in Mac OS X’s

TextEdit.

Whatever you do, don’t save any changes

to it in TextEdit. TextEdit uses RTF format by

default, which makes the file unreadable as far

as Director is concerned. Even if you save it as

raw text, TextEdit uses the Line Feed character

for line breaks, again making it unreadable for

Director.

If you have administrator privileges, you

can change the application used to open the

fontmap.txt file by default by:

1. Selecting the file in the Finder

2. Selecting File|Get Info

3. Expanding the Open With tab

4. Selecting the application that

you want to use in the pop-up

menu

Note: You may need to

create a copy of the file

in order to obtain the

appropriate permis-

sions.

If you want to

edit the

fontmap.txt file

in Mac OS X (and

you will see

shortly why you

might), and

you’re unable to

run Classic appli-

cations, you can

import the exist-

ing file into

Director as a Script,

using File|Import...,

then make your

changes. You can use

the Link As button at the

Script tab of the Property

Inspector to save the edited

file out to your hard disk.

MXDJ.COM • 39



xile written & illustrated by louis f. cuffari 9

40 • MXDJ.COM 8 • 2004

characters, as well as all the comments. If

the movie uses only low ANSI characters

and fonts that appear on both platforms,

you can use an empty fontmap.txt file.

It’s probably best to work on a copy

of the original fontmap.txt. You can use

the Property Inspector at the Movie tab

to import a custom version of the file into

your current movie (see Image V).

What fontmap.txt 
Cannot Do

The character mappings in the

fontmap.txt file are applied only to fields

and text members saved in Director casts.

If you need to import or export text using

the FileIO xtra, then no character map-

pings are applied: the text is read in

exactly as it appears on the hard disk. The

same is true if you need to send text from

one machine to another over a multiuser

connection, as in a chat application.

Suppose you have a project where

you need to read in external text that is

likely to include high ANSI characters.

How do you know if the file is in Windows

or Macintosh format? How do you know

whether or not the high ANSI characters

need to be converted? As long as the text

contains a line break, you should be able

to make an educated guess.

Line Breaks
Director started life as a Macintosh

application. As a result, it uses a single

Carriage Return character –

numToChar(13) – for line breaks on both

Macintosh and Windows. If you write the

contents of a field or text member to the

hard disk using FileIO, then open the

resulting file in NotePad, the line breaks

will look distinctly odd, as Image VI

shows.

The solution is to replace all Director-

style line breaks with Windows-style line

breaks before you export. To do this, I use

a generic ReplaceAll() handler (see code

II). Image VI contains three lines that are

commented out; if they were uncom-

mented, the output would be in

Macintosh format on a Macintosh and in

Windows format in Windows.

The extra Line Feed character used by

Windows may appear in different guises

on a Macintosh, depending on the appli-

cation that displays the text. In

SimpleText, it appears as rectangles at

the beginning of each new line. In

im
a

g
e

 V

“There are times
when you need to
take matters into
your own hands”



Director, it appears as an extra blank line

in both field and text members, though it

may appear as a rectangle in the Cast

window thumbnails, as you can see in

Image VII.

Cross-Platform Text Files
So, if Windows-style line breaks look

strange on a Macintosh, and the line

breaks used by both Director and

Macintosh misbehave on Windows, how

can your application work cross-platform

with text files?

My solution is to export the files in

Windows format and to check the format

on import and make the necessary con-

versions. Checking the format means

testing what line break character is used

in the imported file, and using that to

decide how the high ANSI characters

have been encoded (see code III).

Suppose the file is in Windows format,

and the application is running on

Windows. All that needs to be done is to

remove the extra Line Feed characters, so

that Director can display it correctly.

If the application is running on a

Macintosh, the high ANSI characters need

to be converted as well. This means that

the ANSI code for every character needs

to be checked, and characters whose

codes are greater than 127 need to be

converted. To do this, I create a Director

list that contains the same information as

the character mapping data in the

fontmap.txt file. You might like to com-

pare the first few entries in the tFontMap

list in code IV with those in Image III.

I use a similar conversion process to

convert from Macintosh format to

Windows format before I save a file to disk

on a Macintosh. This means that the file is

converted twice on a Macintosh (once on

import and once on export), while all that

happens in Windows is that Line Feed

characters are added or deleted.

In fact, the complete handlers that you’ll

find in the downloadable cast can handle

conversion from Mac, Unix, or Windows for-

mats to either Windows or Mac. The cast

also includes a script containing much more

robust versions of the WriteToFile() and

ReadFromFile() handlers mentioned previ-

ously. These are called FileWrite() and

FileRead(). Code V shows handlers that you

could use for importing and exporting text

cleanly on both platforms.

Conclusion
Director takes care of most of the

platform differences between Windows

and Macintosh, as far as fonts and text

encoding are concerned.  If you need to

import text on the fly, you can mimic the

techniques used by Director to convert to

the appropriate format, as required.

8 • 2004 MXDJ.COM • 41

im
a

g
e

 V
II

im
a

g
e

 V
I



VIRTUAL
SHOWROOM

Yes it’s true – at some point, it was a 

challenge for me to swap an image on 

the stage. Hey, we all start somewhere. 

About a million challenges later, and voila 

– a decent Director developer!

Yes it’s true – at some point, it was a 

challenge for me to swap an image on 

the stage. Hey, we all start somewhere. 

About a million challenges later, and voila 

– a decent Director developer!

by lisa del padre

42 • MXDJ.COM 8 • 2004



8 • 2004 MXDJ.COM • 43



Here is how it happened and some of

what I’ve learned: I started using Director

a couple of years ago when I was in col-

lege in Austria and made my first “baby

steps” with it. Granted, I had (little) pro-

gramming background. I created a very

simple application for my niece, which let

her solve calculations. Whenever she had

one right, she could see a picture of her-

self. It wasn’t anything fancy, but in devel-

oping this program, I learned the basics

of Director and I gained confidence that I

could do more. 

After creating a few other small proj-

ects with Director, I thought I knew it all

and took on a huge job during my intern-

ship. The project was called “Virtual

Showroom” and the customer was LEGO,

an obviously well-known toy manufactur-

ing company. 

The task at hand was to transform

their paper-based retail catalog into an

interactive CD-ROM–based application.

The products had to be separated into

categories and a menu had to be put in

place to access individual categories.

Also, we needed to create different prod-

uct views, a thumbnail view with multiple

products on one page, and a detailed

product view with bigger images and

more information. They also wanted to

incorporate their product line video com-

mercials.

Because my knowledge in Director

was fairly basic, we had to create every

page “by hand.” We took a product

image, made it the correct size for both

thumbnail and detailed views (we used

PCT images, because this format allows

for gradient alpha channels), and placed

it on the Director stage. Now, multiply

that by about 200 products. This doesn’t

seem so bad, right? Well, it soon turned

out that this method wasn’t very effective

because product lines, images, and info

constantly changed during the develop-

ment process. Proofing was a nightmare.

For the next version, we needed to create

something more updateable and dynam-

ic.

We are into version 5 of this project

right now and it’s fully updateable. It also

includes product-ordering functionality,

database access to client data,

PowerPoint marketing presentations,

videos, and lots more. I can’t go into

much detail about how we pulled it off,

but I’ll try to give you some ideas.

The heart of the program is a big list

of property lists containing all of the

product info. This list is dynamically gen-

erated on startup of the “Virtual

Showroom” from a tab-delimited text file.

As you may know, a file like this can be

exported from many database-like appli-

cations, including Microsoft Excel. We

chose to go with this format because the

requirements for knowledge and soft-

ware of the person editing the data are

few. Another advantage is that products

come up in the exact order in which they

are listed in the Excel file, so no number-

ing is needed. I have to say that this list is

HUGE, but it does not bog down Director

at all. Even working through the entire

list to calculate totals only takes a split

second. 

This is a simplified version of what the

list looks like:

dbList = [[#name: “product1”, #price:

12.00], [#name: “product2”, #price:

40.00]]

In order to access the price of product

2, I simply call this command:

Price = dbList [2].price

On to more secrets – how we are

dealing with product images. Every

thumbnail and detailed product view is

generated dynamically. All images are

available in an external cast. Using

“Standard Import” when importing all

images into this cast would have made

the cast file size too big, so I only linked

to the images. Even when linking to the

images, the cast was somewhat big,

because Director automatically creates

thumbnail images for each imported

image. To work around this problem, I

wrote a routine that replaces the thumb-

nail image for each cast member with an

image of one pixel black. 

member(memberNum, imageCastNum).thumb-

nail = member("thumbnail").picture

The cast contains 800 linked images

and is only about 500 kb!

For the dynamic product-page gener-

ation, I created template screens with

transparent placeholder sprites for prod-

uct images. Depending on the viewed

product, I swapped out the placeholders

with the actual product image from the

image cast.

There’s one last thing I want to men-

tion here because it is a trick I’ve used

over and over again, even for other proj-

ects. If you want to create an overlaying

menu, video interface, or whatever, with-

out using MIAW, you can try this:  

Consider the fact that I have a project

with some sort of content on the stage

and a button that, when clicked, is sup-

posed to display an overlaying menu.

44 • MXDJ.COM 8 • 2004

im
a

g
e

 I



8 • 2004 MXDJ.COM • 45

First, I create a button behavior for the

menu button that takes a screenshot of

the stage and goes to the “menu” frame.

on mouseUp me

member ("screenshot").image = (the

stage).image

go "menu"

end

The member “screenshot” can be any

bitmap cast member. I would just import

any image and name the member

“screenshot.” Of course, now I have to

create a “menu” marker and put the

“screenshot” member in the center of the

stage. Create an exitFrame behavior so

the playhead stays on the menu marker

once it gets there. Try this and see what

happens. You will see that there is a

seamless transition from the actual con-

tent to the “menu” frame with the screen-

shot. Now you can go on to create what-

ever menu you would like on the “menu”

frame. I hope the benefits of this process

are clear: it certainly cleans up the time-

line and simplifies the task of creating

anything that needs to overlay the stage. 

Obviously, there’s a lot that I can’t

explain here. To make a long story short –

I sweat, I swore, and I conquered. 

Troubleshooting
Being able to troubleshoot is almost

as important as being able to program

with Director. It just so happens that

there are ALWAYS last-minute problems

with a project, and this is a rule with few

exceptions.

As frustrating as it can be to trou-

bleshoot, the bright side is that you’ll

learn a lot in trying to figure out the

problem. And if everything you try fails,

there’s always Macromedia Tech Support

to help out. Anyway, here are some tips I

can give after endless hours of trou-

bleshooting.

Prepare Your Troubleshooting

There are a lot of ways to get to the

bottom of a problem. However, making

troubleshooting easier, because you

know it’s coming, can start at the begin-

ning of a project. 

Externalize Scripts

Whenever I start a project, one of the

first things I do is create an external cast

that is called “scripts.cst.” Needless to say,

all of my scripts are placed in this cast.

Doing this brings a lot of advantages:

Apart from being able to reuse scripts

throughout the entire project, changes

can be made very efficiently. It also saves

time, because you don’t need to create a

projector every time you make a change

to your scripts. Also, if a customer calls

with a problem, you can update your

scripts cast and e-mail it to your cus-

tomer (because there are only scripts in

this cast it’s also very small). The cus-

tomer can then replace the file on his

end and see the changes instantaneously. 

It’s also a good idea to create a stub

projector. To do that, I create an empty

director file and a “startMovie” script. The

startMovie script looks like this:

On startMovie

initProject ()

end

I declare the initProject method on a

script sheet in my external scripts cast. In

this script, I initialize all necessary variables

and tell the projector to go to the first

movie. That way, I have all scripts “exter-

im
a

g
e

 I
I

“BEING ABLE TO TROUBLESHOOT IS 
ALMOST AS IMPORTANT AS BEING ABLE 
PROGRAM WITH DIRECTOR”



nal” and I have control over almost every-

thing without creating a new projector. 

Display Full Error Text

Another preparation I make at the

beginning of a project is to create an “.ini”

file, which is called the same name as the

projector. For example, if the project is

called “test.exe” I would have a file called

“test.ini” containing the following text:

[lingo]

DisplayFullLingoErrorText=1

This file ensures that the full error text

is displayed when a script error occurs

while running the projector. Instead of

just saying “Script error” when there’s a

problem, the message will give you more

detailed information as to why it

occurred, as you would see in the author-

ing environment. I find this to be very

helpful. 

Verify Xtra Versions

The last thing I want to mention here

is about Xtras. Make sure all Xtras are the

correct version for the given Director ver-

sion. If this isn’t the case, it can create all

sorts of bad (but sometimes subtle) prob-

lems. A typical case of this would be

when everything seems to work fine in

the authoring environment, but not

when you run the projector. 

What to Do When a
Customer Calls With a
Problem

Just when you think you’re done with

a project, there are those painful calls –

the customer says that this or that isn’t

working, the project crashes, it doesn’t

run smoothly enough – and YOU have to

take care of it FAST. Here is how you pre-

pare your troubleshooting process:

Get All the Info You Can Get

It’s very important that the customer

helps you in trying to narrow down the

scenario that is creating the problem. If

you know that the problem always

occurs when you hit a specific button,

you’re already halfway there. Have

him/her send screenshots of any error

messages (this is where the previously

mentioned .ini file comes into play!). 

Before you start going crazy trying to

figure out the problem, make sure that the

customer is running the project on an

“allowed” system. Also, have him/her

explain exactly which actions were taken

before the problem occurred. For exam-

ple, “First, I clicked on a product, then I

opened the menu, etc.,” just make sure he

or she isn’t trying to do something he or

she isn’t supposed to be doing. For exam-

ple, I had case where the customer was

trying to run two instances of the projec-

tor at the same time, which would obvi-

ously create problems. If you think the

problem might be due to a corrupt file,

send another copy, or e-mail/FTP the file

in question for the customer to download.

Verify the Problem

Once you have as much info as you

can get, the challenge can begin. The first

step you should take is to verify the prob-

lem on your end. If you have a system

setup that’s similar to your client’s sys-

tem, you should be able to recreate the

problem. This will speed up the trou-

bleshooting process tremendously

because you’ll need less input from your

client in testing the possible solutions.

46 • MXDJ.COM 8 • 2004

im
a

g
e

 I
II

im
a

g
e

 I
V



8 • 2004 MXDJ.COM • 47

Use Your Resources

The second step I usually take is

searching the Tech Support section on

www.macromedia.com as well as their

user forum. I have found answers and

work-arounds for so many problems

there because chances are, if you’re hav-

ing this problem, someone else had it

before you and found a solution for it –

don’t re-invent the wheel, it just doesn’t

pay very well. Some people on these

forums seem to know it all “Mark A.

Boyed,” whoever he is, must have posted

thousands of answers. I want to thank

everybody on the user forum for their

valuable input to the Director community

and for saving my a** over and over

again.

Troubleshooting Methods
Whether or not you found answers,

it’s time to get your hands dirty. First

thing: MAKE A BACKUP OF YOUR EXIST-

ING VERSION and take the “Final” label off

this one!! I didn’t always do this, and

sometimes I really regret it. 

Be Creative!

If you found answers anywhere,

implement and test them. If you didn’t

find answers anywhere, there are some

things you can do before calling Tech

Support. One very good trick I discovered

recently is putting the following com-

mand in your “startMovie” or “initProject”

script: 

the debugPlaybackEnabled

This command brings up a message

window during runtime and you can use

it just like the one in the authoring envi-

ronment. This is a tremendous help when

problems only occur in projector mode or

on certain operating systems. Even still,

you’ll have to be creative in finding the

bug! Anything is possible – I have experi-

enced the oddest and most unusual

problems. A command line that doesn’t

create problems in one spot could create

problems in another for no obvious rea-

son. Pay attention to memory usage in

the task manager! Sometimes a problem

causes the projector to keep eating up

memory and never clear it out again,

even when using unload commands.

Certain script sheets can become cor-

rupted, so copying and pasting the script

into a new script sheet and deleting the

old one may help – like I said, anything is

possible.

Top-Down Method

I usually start solving problems this

way. What I mean by “top-down” is that

you start taking stuff (script lines, images,

etc.) out of the project and keep testing,

testing, testing, until you don’t experi-

ence the problem anymore. Of course, it’s

important to keep track of your changes.

Whatever you changed last before the

project started working again is probably

the root of the evil. If you can’t take any-

thing out, I would try finding different

ways of implementing the particular

parts of your project that seem to cause

the problem. For instance, using an Xtra

instead of built-in Director commands

may help. Or maybe if using MIAW seems

to be a problem, you can avoid using it

using the “screenshot” method I

described earlier.

Bottom-Up Method 

Once you have an idea of what the

problem is, it’s often good to start with a

blank project and recreate the problem

on purpose with the simplest assets

possible. At least you will verify that

what you found out is true, and you can

also start working on a work-around in a

test bed instead of pulling apart the real

project. Remember, work-arounds don’t

have to be elegant  – as long as they

work. 

im
a

g
e

 V

“REMEMBER, WORK-AROUNDS 
DON’T HAVE TO BE ELEGANT  
– AS LONG AS THEY WORK”

Imported from Austria,

Lisa has brought us her

sophisticated sense of

style and a great under-

standing of the medium.

Adding clever function-

ality to sleek designs

with an artistic flair and

a unique perspective,

Lisa has produced an

heir and a lot of world-

class multimedia. She is

wicked smart.

lisa@delpadre.com



48 • MXDJ.COM 8 • 2004

ost of my work is invisible.

At least, it isn’t seen by

very many people. Much

of it is business-to-business sales tools for

high-end server components. Lately, a

good portion of it has been in languages

where the target audience is even smaller

than the English-speaking market. The

majority of the projects on which I work

have a maximum audience of a few thou-

sand people worldwide. The concept

demos and analysis tools that have been

my bread (except for the Atkins diet) and

butter over the past few years may only

be seen by less than a couple hundred

people.

So, it was with some relish that I took

on a project this past spring that had a

much higher profile, despite a couple of

potential drawbacks: a very short, very

firm deadline and a rather limited budg-

et. One of the reasons I was able to get

the job done in the allotted time and

keep it under cost (pretty much the same

goal in this case), was Director’s flexibility

in handling various graphic and media

elements, as well as its long-standing

external file linkage capabilities.

Specifications
In September of 2003, Chris Williams,

an interactive kiosk hardware specialist

with whom I had worked on some other

projects, put me in touch with the

Oregon Zoo. The Zoo was investigating

the possibility of creating a kiosk that

incorporated a live, remote camera. The

kiosk would need to do more than just

show video – it would also display infor-

mation about an animal and its habitat.

The design staff was aware of Director – a

couple of other kiosks in the Zoo had

been created with it – but they weren’t

very familiar with it. They wanted to veri-

fy that the hardware they were consider-

ing for the remote cameras could be dis-

played in Director.

I was reasonably certain Director

could take on the task. Several different

video formats are supported by built-in

and third-party Xtras (the Director com-

ponents that extend its capabilities). My

own personal preference for video within

Director is Apple QuickTime. It’s the best

integrated and most flexible of the sup-

ported video formats – in my experience

– and it was the first one I tested on the

camera vendor’s test URLs. I was able to

create a Shockwave movie within a cou-

ple of minutes that displayed one of their

streaming video samples. A simple field

and button added to the movie by the

time of the initial meeting at the Zoo

made it possible to link to almost any

QuickTime-compatible video stream. The

meeting went well, but then things were

quiet for seven months.

Seven months, it so happens, was

approximately the amount of time it took

to complete the Oregon Zoo’s new Eagle

Canyon Exhibit. The outdoor installation

is part of the larger Great Northwest sec-

tion of the Zoo, and contains habitat

areas for beaver, otters, water birds,

salmon, and – of course – eagles, which

were nursed back to health from injuries

and couldn’t survive in the wild.

I had more or less forgotten about the

project, figuring the Zoo had gone with

another developer, when suddenly, in the

first week of May, things got moving

again. Eagle Canyon was scheduled to

open May 28. Media for the project was

still under development and would be in

my hands mid-month. While the artwork

for the interface was minimal – consisting

of only a few buttons and informational

screens – and was being provided by the

Zoo’s own Design Services department,

the video from the United States

Department of Agriculture’s Forest

Service Pacific Northwest Region was still

in the digitization process. 

Additionally, there were now going to

be two kiosks. The kiosks would be virtu-

ally identical in function, but one would

feature eagles and the other would fea-

ture salmon. The eagle kiosk would link

to a camera installed in a long-time nest-

ing location in the southern Willamette

Valley. The salmon kiosk’s camera was

already in place in the Columbia River, in

spawning grounds near Bonneville Dam.

The kiosks would run continuously,

with an attract loop showing full-screen

video and inviting the user to interact

with the screen. When activated, the

kiosk menu would link to a screen featur-

ing five video clips (different for each

kiosk), an informational screen about the

USDA Forest Service NatureWatch

Program, and a credits screen. The initial

design document actually required two

versions of each kiosk, but because the

view of the empty eagle nest and spawn-

ing grounds during the winter wasn’t

desirable, we were now up to four indi-

vidual applications: two kiosks in two

modes each (see Image I).

Planning
Right away, I started looking for ways

to simplify the project implementation.

You might call me lazy, but I like to think

of myself as efficient. By the time I had

the final go-ahead on the kiosks, we were

less than two weeks away from the morn-

ing when the exhibit was supposed to

open.

First, I decided that a single engine

would drive all versions of the kiosks.

Rather than create four separate applica-

tions, I was determined to use a single

engine for both the eagle and salmon

kiosks, with an easily modifiable initializa-

tion file that controlled the source for the

live camera, so that the Zoo’s staff could

turn the camera on and off easily.

interactivity

Interactive Kiosks

Maximizing the capabilities of Director
by darrel plant

m



8 • 2004 MXDJ.COM • 49

This was made much easier due to

the similarities between the two kiosk

versions. All of the identical content –

including the operational logic – was put

into the main Director movie. Using an

external cast file for the unique elements

meant that switching from the eagle

kiosk to the salmon kiosk would require

the modification of only a couple of file

names. An external text file would hold

the initialization information.

Cutting four applications down to a

single application made the project a lot

more manageable and much easier to

debug when we got to the final stages.

Implementation
Most of the technical and physical

details of the kiosks were decided before

I was brought onto the project. The

human interface is a Planar PT170M

touchscreen, a 17" screen running at

1280x1024 pixel resolution (the video

playback was specified for full screen at

that size). The computers inside the

kiosks are Pentium 4 Little PCs from

Stealth Computer Corp. (measuring

about 10"x6"x3"). The live cameras are

from VBrick Systems and transmit a

QuickTime-compatible RTSP (Real-Time

Streaming Protocol) signal. The two cam-

eras are hooked into the Zoo’s internal

virtual private network so outsiders can’t

hook into the signal. Final testing of the

live camera had to be done on site.

Artwork Preparation
Prior to the installation of the Eagle

Canyon Exhibit kiosks, the Zoo had two

other computer-driven interactive kiosks

(there are, of course, many other types of

interactive exhibits at the Zoo). While the

Design Services department was very

familiar with preparing printed materials

and outdoor signage, they weren’t accus-

tomed to digital preparation standards.

I received eight Adobe Illustrator files

per version/configuration combination

for screen art. Due to some effects and

type translation problems, I couldn’t

open the files with FreeHand MX, so I

worked on them with Illustrator 10. 

Regrettably, all of the screen art was

sized to the approximate physical dimen-

sions of the screens (13.3"x10.6") and not

to 1280x1024. The proportions are close,

but not as exact as you’d like when shift-

ing between screens with corresponding

elements. Simply exporting bitmap

images from the original files wouldn’t

work either, because they come out

about one-third too small (13.3" @ 72dpi

is only 957 pixels). The positioning

images I created were from scaled-up

versions of the screen comps.

To create the bitmap elements used in

the kiosk, I used a combination of direct

bitmap manipulation in Fireworks and

cropping of the screen comps in Director’s

Paint window. Because the scaled comps

weren’t sized to the exact pixel dimensions

of the kiosk screen, I just opened the image

in Fireworks and sized it there. The video

captures used as buttons on the video

selection screen were obtained by duplicat-

ing the placement screen capture, then

cropping the image. The background was

shared between both versions of the kiosk,

so its bitmap was placed in the default

Internal cast of the movie. The video but-

tons show scenes specific to the kiosk ver-

sion; they’re in the external media cast file.

The only other elements created out-

side of Director (apart from the video)

were the round button elements, which

were exported from Illustrator to

Photoshop format, then converted to

Director-friendly PNG format in Fireworks

(Director can import Photoshop PSD files,

but there is a difference in how the alpha

channels are built for things like drop

shadows that makes PNGs preferable).

Graphics of the text for the credits

and information screen information were

exported in the same way and placed on

the stage rather than recreating the ele-

ments inside Director from individual text

and graphic elements.

The Rotis San Serif font was used

throughout. All of the original artwork had

been developed on a Macintosh, but the

delivery platform was a Windows XP com-

puter. When building the Director movie, I

embedded the font on my own Mac so

that I could use the embedded version

throughout production. Type associated

with buttons and messages was created

using text cast members (although I used

Director MX 2004 for this project, I didn’t

use the new Flash component cast mem-

ber types, preferring to rely on that with

which I was more experienced).

Initialization
One of the key items to be addressed

was a simple way for the Design Services

(or Information Technology) department

to modify the kiosk’s live camera func-

tion. They needed to be able to turn it on

and off, and to change the URL to which

the kiosk connected if there was a modifi-

cation in the camera setup. I decided to

make it as easy as I possibly could.

In a different situation, I probably

would have used some sort of formal

data structure like XML for the initializa-

tion file, but due to the simplicity of the

initialization data, I just used a text file

delimited by line feeds as the easiest to

understand. There are two lines in the

file: the first contains information on the

camera URL, the second contains file and

timing information about the video clips.

The initialization file (called

settings.txt) looks like this:

rtsp://128.0.0.1/video1

[#path: "salmon.mov", #clips:

[[#start: 360, #end: 4140], [#start:

4560, #end: 6900], [#start: 7420,

#end: 10200], [#start: 10740, #end:

12960], [#start: 13380, #end: 16080]]]

The initialization of the kiosk happens

right in the startMovie handler:

vfile = new (xtra "fileio")

vfile.openfile (the moviepath &

"settings.txt", 1)

vsettings = vfile.readFile()

put line 1 of vsettings into field

"liveurl"

put line 2 of vsettings into field

"cannedInfo"

vfile.closeFile ()

gInfo = value (field "cannedInfo")

Nothing fancy. Create a FileIO Xtra

instance, open the file for reading, read

the entire file into a variable, then pop

the two lines of the text variable into sep-

arate field cast members and close the

file. The cannedInfo field is converted

from pure string data into a property list

and stored in the gInfo global variable.

The Dispatcher
The heart of the kiosk is its ability to

do things on its own: to change what it

displays during the attract phase, to

return to the attract screen when people

walk away, etc. Even in this very simple

kiosk, there were a number of variations I

had to keep in mind when determining



50 • MXDJ.COM 8 • 2004

what, when, and how to get the kiosk to

its next stage.

Fortunately, Lingo’s timeout com-

mand provides a great method for han-

dling these types of automated instruc-

tions. Director’s timeouts let you create a

named timeout object, give it a cycle

time, and execute an action when its

cycle comes up. I called this section of

the movie script the dispatcher.

As an example, during the attract

phase of the kiosk, the message shown in

the blue band at the bottom of the

screen cycles between an invitation to

click on the screen and an attribution of

the video to the Forest Service. As is the

case with so many tasks in Director, this

could be done several different ways. I

chose to use handlers called go1A and

go1B (1A and 1B corresponded to the

original design document’s screen desig-

nations) and a timeout in each along

these lines:

timeout ("default").new (12000,

#go1B)

This command sets (or resets) a time-

out object called default with a 12-sec-

ond cycle. When the cycle expires, the

go1B movie script handler is executed

(the timeout command in go1B is identi-

cal except that its action is #go1A).

The movie script for the kiosk has

seven such handlers, no more than six

lines in length (although most call a

video subroutine discussed later). There

are two non-video screens for which the

dispatch handler script consists of noth-

ing more than resetting the default time-

out object, deleting a video reconnect

timeout, and moving the playback head

with a go command.

Video Setup
If it hadn’t been for the video, this

project wouldn’t have been much more

than buttons moving between marker

labels in the Score, with some timeouts

thrown in for good measure. The video

added a layer of challenge that affected

both the programming and the design.

Initially, the five pre recorded

video segments came to

me in DVD format.

Director MX

2004 can

now incor-

porate DVD video. I could have used it as

it was, running the video from the hard

drive of the computers (as they didn’t

have internal DVD drives). DVD video can

only be displayed in direct-to-stage (DTS)

mode, however, and a couple of the

screen designs had graphics overlaying

the video, which would preclude over-

lays. For that reason, I had the video shop

provide me with QuickTime versions of

the eagle and salmon videos, because

QuickTime has the option of running in

non-DTS mode with other sprites appear-

ing on top of the video. Although that

affects playback quality, my tests with the

samples didn’t find it to be a problem.

This decision also simplified my video

management tasks. Instead of switching

between DVD and QuickTime, the kiosk

application would use only QuickTime.

A single QuickTime cast member is

used in the kiosk, sized to 1280x884 pix-

els (the area of the screen above the blue

menu band). All digital video cast mem-

bers in Director are linked; the kiosk’s

QuickTime cast member would be alter-

nately linked to the streaming video from

the live camera and the file for the

canned video on the hard drive.

Video Handling
The canned video segments were the

simple part of the video handling. There

are two conditions under which the

video segments appear. The first is when

one of the buttons is pressed on the

video selection screen. The other is in the

kiosk’s attract loop. If the first line of the

settings file has only a line return and no

URL, the kiosk automatically chooses a

random canned video clip to display

instead (this is the “winter” mode for the

kiosk).

The settings file tells the kiosk appli-

cation movie which digital video file to

use for the canned videos. The video

shop that handled the creation of the

QuickTime files only gave me a single file

for each of the kiosk versions. Rather than

take the time to split them up, I used

Director’s great control of QuickTime

media to play back selected portions of

the single video where appropriate.

The second line of the settings file

contains a property list with path and

clips properties. The path is just the file

name for the canned video movie. The

clips property is a linear list with five

im
a

g
e

 I





52 • MXDJ.COM 8 • 2004

items, each of which is another property

list, with start and end properties. The

five canned video clips are defined by

these values, which are in ticks (measure-

ments of 1/60th of a second) from the

beginning of the digital video file. The

order of the clips determines which but-

ton plays each section of the video. In the

example of the settings file above, the

first button (top left) would play from 6

seconds (360 ticks) to 69 seconds (4140

ticks) into the movie. 

The video selection buttons have a

simple behavior on them that identifies

the button with an integer (from 1 to 5).

global gClip

property pVideoID

on getPropertyDescriptionList

return [#pVideoID: [#comment: "Video

ID", #format: #integer, #default: 1,

#range: [1, 2, 3, 4, 5]]]

end

on mouseDown me

sendAllSprites (#setVideoHighlight,

me.spriteNum)

gClip = pVideoID

go4

end

When the touchscreen detects that

one of the buttons has been activated,

the button for selected video becomes

highlighted in red, the gClip global vari-

able is set to the identifier for the select-

ed button, and the go4 dispatch handler

is called.

on go4

member ("livevideo").filename =

gInfo.path

timeout ("default").forget ()

timeout ("reconnect").forget ()

go "4"

end

To play back the canned video seg-

ment, the filename property of the

QuickTime cast member is set to the

appropriate video file. When the video

segment is finished playing, the applica-

tion returns to the video selection screen,

so the default timeout isn’t needed. The

reconnect timeout object is used for the

live camera, but is also unnecessary in

this section of the application. The go

command takes the movie to a position

in the score with a marker labeled 4

(again, to correspond with the design

document), not frame 4.

The section of the Score that plays

back the canned videos contains a

QuickTime video sprite with my Canned

Video behavior:

global gInfo, gClip

property pSprite

on beginSprite me

pSprite = sprite (me.spriteNum)

pSprite.member.video = true

end

on enterFrame me

if pSprite.movietime <

gInfo.clips[gClip].start then

pSprite.movietime =

gInfo.clips[gClip].start

if pSprite.movietime >

gInfo.clips[gClip].end then

go3B

end if

end

The beginSprite handler ensures that

the video playback of the sprite’s cast

member is enabled. The enterFrame han-

dler is simplicity itself. The sprite’s

movieTime property is checked against

the start property of the clip selected

when the button was pressed (and gClip

was set). If the movieTime is too low

(which it will be when the sprite is instan-

tiated), the movie is brought up to the

starting point. When the movieTime

reaches the clip’s end value, the go3B dis-

patch handler will reset things and return

the movie to the video selection screen.

Dealing with the attract loop is a bit

more difficult because of the live camera.

The attract video shows up on three

screens and should appear seamless as

those screens are navigated. Two of the

screens are the different phases of the

unactivated kiosk, when nobody has

touched the screen. The third screen is a

menu screen showing the attract video

and three menu options, which is the first

thing users see when they touch the

screen in attract mode.

Each of the dispatch handlers for

those screens uses the setupVideo han-

dler to link to the proper video source:

on setupVideo

vPath = field "liveURL"

if vPath = "" then

vPath = the moviePath &

gInfo.path

end if

if vPath <> member

("livevideo").filename then

member ("livevideo").filename =

vPath

end if

end

If the liveURL field is empty (i.e., if the

first line of the setting file is blank), then

the vPath variable is set to the canned

video path. Then, if the filename of the

QuickTime cast member isn’t already a

match for vPath, it’s reset. This keeps the

video from being reset when it’s not

needed; it’s also the mechanism that

changes back to the live video stream

when the movie returns from canned

video playback.

Of course, this was complicated by

the fact that the kiosk needed to operate

with canned video when the live camera

wasn’t available. In the attract mode, the

live camera would be on continuously.

However, but the canned video clips that

would show as an alternative needed to

play back in some sort of random order.

This could have been accomplished by

creating different sections of the score to

handle the live video and canned video

tracks, but I felt that would be more trou-

ble than the alternative, which was to

create a system that automatically

detected which mode was playing. This

was easily checked by looking at the

liveURL field and writing a behavior to

accommodate both. The behavior is actu-

ally a bit too involved to go into in this

article, but, essentially, it expands on the

Canned Video behavior previously men-

tioned. In the portion of the behavior

that handles the canned video, instead of

jumping to the video selection screen, a

new random clip is selected and the

movieTime is immediately set.

I put together the essential elements

of one version of the kiosk in about three

days. Things worked pretty well using a

live video test feed from vBrick’s Web site

and the QuickTime files. The whole thing

needed to be tested in situ, however,



Darrel Plant is the

author of several out-of-

print books on Director

and Flash. He's the pub-

lisher at

Moshofsky/Plant

Creative Services

(www.moshplant.com),

a Portland, Oregon-

based contract develop-

er. Darrel likes to think

that he specializes in

animation programming.

He has worked on proj-

ects for Intel, Second

Story Interactive, and

Macromedia, among

others.

dplant@moshplant.com

8 • 2004 MXDJ.COM • 53

with the actual video stream from the

salmon beds (regrettably, the aerie was

empty this year due to a road-killed

eagle). The video was only accessible

through the Zoo’s network, so six days

before the opening, I schlepped my lap-

top, a USB drive, and the latest copies of

the application up to the Zoo for testing.

A couple of things were immediately

obvious. For whatever reason, the live

cameras took significantly longer to syn-

chronize than the test streams did. It

was taking ten or more seconds for the

image to fully resolve. Also, while I had-

n’t encountered any problems running

the test streams in non-DTS mode, the

actual streams weren’t working well that

way, which meant some minor redesigns

were needed. The latter wasn’t a signifi-

cant problem, because we’d discussed

the possibility earlier in the process, and

the client was aware that we might need

to make some sort of change to avoid

overlays. The resolution issue was more

distressing because of the extreme

delay it caused before an acceptable

image was displayed. Further testing

showed that it happened every time the

sprite’s image was initialized on the

stage, whether or not separate cast

members were used for the live and

canned video feeds.

I’d love to say I found a great solution

for the problem, but what we ended up

doing was to slap a screen capture on

the screen, turn off the video property

for the QuickTime cast member so no

picture was visible, and add a film loop

that says “Connecting to Live Video” in

the center of the screen for 15 seconds.

Such are the constraints of time. Of

course, all of this had to be turned off

when the canned video was used as the

attract loop.

Testing and fixing the video issue

took almost as long as the initial phase of

developing this project. But once every-

thing was up and running the way we

wanted it to, I took a copy home and

slapped the text and graphics in place for

the eagle version in just a couple of

hours.

One glitch turned up after installa-

tion: when the link to the camera would

be lost overnight. I added a reconnect

timeout to handle that problem, kicking

it off every few hours when the live cam-

era was active. 

Conclusion
The end result of this project was

that, even though I received the art-

work and canned video in the middle of

the week before the exhibit opened, I

had a working video kiosk application

that ran in two versions. It had capabili-

ties for text control of video streaming,

video playback, and even clip timing

control, all of which were up and run-

ning on the Sunday before a Friday

opening. 

Both of the computers used for the

kiosks have the same data on them. The

salmon kiosk can be switched to an eagle

kiosk by renaming the external cast files

and swapping a text file. The most time-

consuming part of setting the application

up on another computer, should some-

thing happen to the one in the kiosk, is

duplicating the large video files (the

eagle movie is 1.6 GB). The rest of the

data for the kiosk is less than 25 MB, so

updating the engine is a snap. Once the

Design Group is done with their next

project, I’ll show them how to change the

graphics in Director. Meanwhile, on open-

ing day, I was inside the eagle enclosure,

holding one of the monitors up out of

the water as it was being installed,

because I was on hand to make sure

things ran smoothly.

Director is responsible for getting this

project done on time. Its media handling

is rugged enough that I can expect it to

do what I tell it to, particularly in a con-

trolled environment like a kiosk. The abili-

ty to combine video from hard drive and

streaming sources by simply changing a

cast member property, the font portabili-

ty in both playback and authoring, exter-

nal position-based cast swapping, even

bitmap editing within the application, all

combined to bring this project to fruition.

The fact that there are many ways to

accomplish the same task was also criti-

cal: it gave me the options I needed to

structure the movie with a combination

of simple movie scripts and behaviors.

Simplicity is much more reliable than

complexity. Some people count their pro-

gramming accomplishments in the num-

ber of lines of code that they’ve written.

Call me lazy, but I count mine in the num-

ber of lines of code that I didn’t need to

write.

Advertising Index

Advertiser URL Phone Page

ActivePDF www.activePDF.com 15

CFDynamics www.cfdynamics.com 866-233-9626 5

Electric Rain www.swift3D.com/mx 888-613-1500 Cover III

Hal Helms www.halhelms.com 20

HostMySite.com www.hostmysite.com/mxdj 877-248-HOST 17

Interakt www.interaktonline.com 6

Macromedia www.macromedia.com/go/dwupdated Cover II

Macromedia www.macromedia.com/go/dwupdated 3

PaperThin www.paperthin.com 800-940-3087 21

Seapine Software www.seapine.com/whitepaper.php 888-683-6456 9

Macromedia www.macromedia.com/go/max Cover IV

Web Services Edge 2005 East www.sys-con.com/edge 201-802-3004 57



54 • MXDJ.COM 8 • 2004

o, guru!” I looked up to see the

guy a couple cubicles over

prairie-dogging, trying to get

my attention. I think they call

me “guru” because I’m too old to be

called “dude,” not from the feeling of awe

I think I am due. “What’s the ASCII code

for the German u-umlaut?” I was tempted

to say “none,” which would have been,

technically, the correct answer. Instead, I

opted to be nice for once, and told him

“Lower case? 252, decimal.”

I could have spent time explaining

the difference between ASCII, ANSI, ISO

8859, and the Apple Standard Roman

character set. Perhaps I could have

thrown in some tidbits about so-called

double-byte characters used in Chinese,

Japanese, and Korean. I love to see peo-

ple’s eyes glaze over.

Instead, with a little prompting, I

decided to put that information into this

article, in the hope that it will reach some

people who can actually use it.

The Basics
You probably already know this, but

we have to start someplace. Letters, num-

bers, punctuation, ideograms, syllabaries

– the building blocks of written lan-

guage – are represented in a computer

by numeric codes. Pretty much every-

body agrees that, when the computer

sees a code of 101 (decimal), it represents

a lowercase “e”. We don’t all agree on

what 252 represents, and therein lies the

rub.

ASCII vs ANSI
We commonly refer to character

encoding as a letter’s “ASCII value,” when

we really mean “ANSI value.” A lot of the

time that’s sufficient, but in fact the ASCII

standard is pretty much obsolete.

ASCII (American Standard Code for

Information Interchange) is a 7-bit stan-

dard that has been around since the late

1950s (its current incarnation dates from

1968). It defines 128 different characters,

which is more than enough for English:

upper- and lowercase letters, punctua-

tion, numerals, control codes (remember

control-c?), and nonprinting codes such

as tab, return, and backspace.

Over the past couple of decades

though, computing has become world-

wide, and the old English-centric ASCII

system just wasn’t up to handling

German, French, Spanish, and

Portuguese, not to mention Turkish,

Arabic, and Chinese. There are national

variants of ASCII, which enjoyed a brief

popularity in the 1980s. However, an 8-bit

encoding system was developed by the

American National Standard Institute

(ANSI) in the late 1980s, and it included

all the characters needed for most

Western European languages. Microsoft’s

adoption of the ANSI standard for

Windows 3.1 gave it the momentum to

become the dominant standard. Today it

is the de facto standard for Western

European languages.

You may have noticed that I haven’t

mentioned the word “Macintosh” yet.

That’s because this article is going to be

(appallingly, for some) Windows-centric.

That’s not because of any prejudice

against the Mac; I have been using

Macintosh computers for years, the Apple

II before that, and the Apple before that. I

love the Mac, and use both Mac and

Windows computers every day.

I decided to concentrate on Windows

because space for this article is limited,

and I had to choose one or the other. At

the end of the day, it doesn’t matter a

whole lot, because the concepts apply

equally to both platforms. The details dif-

fer – Macintosh encodes the extended

character set (mostly accented and spe-

cial characters) somewhat differently

from Windows, but the basics are the

same. There is a wealth of information on

the Web, especially on Apple’s Web site,

to fill in the missing details.

What About Turkey, Greece,
and Russia?

Computing has spread well beyond

the U.S. and Western Europe, so a need

quickly developed for a standard for

encoding other languages. The

International Standards Organization

(ISO) provided the answer in its ISO 8859

standard.

I know what you’re probably thinking.

There are hundreds of written languages

in the world, from Afrikaans to

Vietnamese. If they’re all single-byte lan-

guages, how can they be covered by a

single standard? The answer is that ISO

8859 is really several standards – 15 now,

and growing.

The most commonly used ISO 8859

standard is ISO 8859-1, or Latin 1. It cov-

ers most Western European languages,

and then some: Albanian, Basque,

Catalan, Danish, Dutch (partial), English,

Faeroese, Finnish (partial), French (par-

tial), German, Icelandic, Irish, Italian,

Norwegian, Portuguese, Rhaeto-Romanic,

Scottish, Spanish, Kurdish, Swedish,

Afrikaans, and Swahili.

Following is a summary of the other

ISO 8859 standards:

• ISO 8859-2 (Latin-2 or Central

European): Central and Eastern

European languages that use a Roman

alphabet, including Polish, Czech,

Slovak, Slovenian, and Hungarian. 

• ISO 8859-3 (Latin-3 or South

European): Turkish, Maltese, and

Esperanto; largely superseded by ISO

8859-9 for Turkish and Unicode for

Esperanto. 

• ISO 8859-4 (Latin-4 or North

European): Estonian, Latvian,

localization

ASCII, ANSI, Roman 1, and 
What’s All That?

Earn your ‘guru’ nickname
by kerry thompson

y“



image I

8 • 2004 MXDJ.COM • 55

Lithuanian, Greenlandic, and Sami. 

• ISO 8859-5 (Cyrillic): Covers most

Eastern European languages that use a

Cyrillic alphabet, including Russian,

Ukrainian, and Belarusian. 

• ISO 8859-6 (Arabic): Covers the most

common Arabic glyphs, although not

nearly all of them. 

• ISO 8859-7 (Greek): Modern Greek

• ISO 8859-8 (Hebrew): The modern

Hebrew alphabet as used in Israel. 

• ISO 8859-9 (Latin-5 or Turkish):

Largely the same as ISO 8859-1, replac-

ing the rarely used Icelandic letters

with Turkish ones. 

• ISO 8859-10 (Latin-6 or Nordic): A

rearrangement of Latin-4. Considered

more useful for Nordic languages. 

• ISO 8859-11 (Thai): Not a complete

representation of Thai, but covers most

of the glyphs. 

• ISO 8859-12: Was supposed to be

Latin-7 and cover Celtic, but this draft

was rejected. 

• ISO 8859-13 (Latin-7 or Baltic Rim):

Added some glyphs for Baltic lan-

guages that were missing from Latin-4

and Latin-6. 

• ISO 8859-14 (Latin-8 or Celtic): Mostly

a rearrangement of the ISO-8859-12

draft. Covers Celtic languages like

Gaelic and the Breton language. 

• ISO 8859-15 (Latin-9): A revision of

8859-1 that removes some little-used

symbols, replacing them with the Euro

symbol € and the letters Œ, œ, and Ÿ,

which completes the coverage of

French and Finnish. 

• ISO 8859-16 (Latin-10 or South-

Eastern European): In development

intended for Albanian, Croatian,

Hungarian, Italian, Polish, Romanian

and Slovenian, but also Finnish,

French, German and Irish Gaelic.

Using Other Character Sets:
Code pages

English Windows is designed – are

you ready? – for English. That doesn’t

mean it doesn’t support other languages,

though. It just means we have to work a

little harder to utilize them.

Output is fairly easy, especially for

Latin-1 languages (remember, that’s most

of the Western European languages,

including English). Here is some text

copied from a German French Horn man-

ufacturer’s Web site, www.ricco-

kuehn.de/index.htm:

Werbebroschüren vieler Handwerksbetriebe

im Musikinstrumentenbau beginnen mit

der Darstellung einer langen

Firmengeschichte.

I simply used the same Times New

Roman font I’ve been using for English.

Since it is an ANSI font, it has all the

German characters we need, including

“ü”. It would have worked with French,

Italian, Portuguese, or any other ISO

8859-1 language.

But what about Russian? Could I go to

the Pravda Web page and copy some-

thing from a Russian-language Forbes

article? Check it out in Image I.

I have no idea what that means, but

apparently I can use Cyrillic text on

English Windows. I can even use my

dependable Times New Roman font. So

what’s going on here? Didn’t we say that

Russian used a different encoding, ISO

8859-5? It does. We were fortunate,

because the version of Times New Roman

I have on my system supports code page

1251, where the Cyrillic alphabet lives, in

addition to Latin-1’s code page 1252.

The term “code page” can be confus-

ing because it is really just another way of

referring to the character encoding.

Essentially, code page 1251 and Cyrillic

encoding are synonymous. You could

imagine a font as a stack, something like

this:

Code 

Page          ISO 8859

1250 8859-2 (Central Europe)

1251 8859-5 (Cyrillic)

1252 8859-1 (Latin 1)

1253 8859-7 (Greek)

1254 8859-9 (Turkish)

1255 8859-8 (Hebrew)

1256 8859-6 (Arabic)

1257 8859-4 (Baltic)

1258 VISCII (Vietnamese)

874 8859-11 (Thai)

Font publishers often include several

national character sets within a single

font – it’s simpler if you can just install

Arial, and have Roman 1 on an English

system, Cyrillic on a Russian system, and

Greek on a Greek system. 

Not all programs support code pages

the same way though. Macromedia’s

Director, for example, has rather spotty

code page support. It will display Russian

on an English system – but dependably

only if you embed a Russian font in your

movie. Also, sending text information

between Flash, which is Unicode-

enabled, and Director, which is not, needs

special care. Communications between

Director and Flash are further complicat-

ed by the fact that, although both are

cross-platform Macintosh and Windows,

the two systems encode high-ANSI char-

acters differently.

Asian and Double-Byte
Languages

You may have noticed that we have

so far neglected a lot of languages, espe-

cially Asian languages. Chinese, Japanese,

and Korean are special cases that we will

cover shortly, but what about Tibetan,

Lao, and other Asian languages?

A few years ago I was a contributor to

the Radio Free Asia Web Site, which had

text in Vietnamese, Khmer, Laotian,

Burmese, and Tibetan, none of which

were (or are) covered by ISO 8859. These

are all single-byte languages, and codify-

ing them remains a work in progress.

Although you can find Tibetan fonts, and

by and large they agree on code usage,

creation of a standard is hampered partly

by low per-capita computer usage, and

partly because scholars don’t agree on

some of the basics of the written lan-

guage, like standardized spelling.

Currently, those languages are likely

to be covered by Unicode, a standard

that has been developing for over two

decades. Unicode is outside the scope of

this article, but it is basically a double-

byte standard designed to offer standard-

ized encodings for virtually every written

human language (and purportedly for

some nonhuman languages like Klingon,

which, for some reason, has been exclud-



56 • MXDJ.COM 8 • 2004

ed from the Unicode specification).

Chinese (simplified and traditional),

Japanese, and Korean, often referred to

as CCJK, have too many characters for

any single-byte encoding, so they are

commonly referred to as “double-byte”

languages. Actually, that is a misnomer,

because they are a mixture of single- and

double-byte codes. Most encodings of

those languages have ASCII or ANSI char-

acters as single-byte characters, and the

rest of the characters are double-byte.

They should more properly be called

“multibyte” languages, but nobody but a

purist (like me) will be bothered if you

call them double-byte.

To understand multibyte encodings, it

helps to understand a little about the lan-

guages. We’ll begin with Chinese,

because the concepts carry over to the

other multibyte languages. Also, I know

more about Chinese than either of the

others. I deny allegations that I chose

Chinese because my wife is Chinese.

Chinese
Chinese, as most people know, uses

ideograms – characters that represent a

concept such as day, person, happy, or

spoon, but have no inherent phonetic

characteristics. 

Actually, ideograms are not too hard a

concept to grasp, because we use them

in virtually every Western language.

Consider this: 42. Those two characters

represent a concept that means the same

to you whether you speak English,

Chinese, or Arabic, which happens to be

where they originated. What’s more, each

of the two numerals can stand on its

own, with a somewhat different meaning.

There is nothing inherently phonetic

about them: you can pronounce them

forty-two, zwei und vierzig, or si-shi er,

and they convey exactly the same mean-

ing. Now, extend that concept to encom-

pass an entire human language, and you

understand ideograms.

Clearly, there are more than 256 con-

cepts in any human language. That’s why

Chinese can’t use a single-byte encoding.

Nobody really knows how many Chinese

characters there are, but you need to

know about 3,000 to read a newspaper,

and a scholar may know 10,000 charac-

ters. With two bytes, we can represent

over 65,000 characters – sufficient for

Chinese.

No Chinese font can reasonably

expect to contain every possible charac-

ter a Chinese writer will need, so Chinese

encoding systems specify locations for

custom characters. People’s names are

often written with unique characters;

occasionally new characters are invented

for new concepts; and there are some

characters that are rarely used, like the

15th-century word for county magistrate

in Yunnan province.

The situation is further complicated

by the fact that there are two methods of

writing Chinese, alluded to above – sim-

plified and traditional. Traditional charac-

ters, or “complicated-body characters” as

they are called in Chinese, are used in

Hong Kong, Taiwan, and by most over-

seas Chinese. Simplified characters, pop-

ularized by Mao Ze-Dong’s push to bring

literacy to the masses, are widely used in

mainland China, and in Singapore.

Increasingly, they are used overseas as a

new generation of Chinese speakers emi-

grates.

Simplified and traditional characters

have nothing to do with pronunciation. If

you read Chinese characters, you can

read Chinese, regardless of which

Chinese language you speak – Mandarin,

Cantonese, Shanghainese, Chongqing-

hua, or any of the dozens, and probably

hundreds, of distinct Chinese languages

and dialects. If you think about our

Western ideograms (numerals), you will

realize we do the same thing. 2^8 = 256

means the same to everybody, no matter

what language they speak.

Traditional and simplified characters

do, however, have an impact on encod-

ing. The Big-5 encoding system was origi-

nally developed for traditional Chinese,

and is the basis of Traditional Chinese

Windows as used in Taiwan. GB encoding

was developed for simplified characters,

and is the basis of Simplified Chinese

Windows as used on the mainland.

Nowadays, there are Big-5 encoded sim-

plified Chinese fonts and GB-encoded

traditional character fonts, but the basic

distinction remains.

Some Chinese systems allow you to

convert from traditional to simplified

characters automatically. That’s relatively

straightforward – you can reliably map

traditional characters to simplified char-

acters. However, because of the way

Chinese was simplified, you often can’t

automatically convert simplified to tradi-

tional.

Chinese characters were simplified in

two ways. Some characters are written

with a reduced number of strokes – for

example, the “speech” character was sim-

plified from seven strokes to two. Other

characters were simply combined. For

example, the Mandarin words for

“empress” and “behind” are pronounced

exactly the same, so one of the tradition-

al characters was dropped, and both are

represented by one character in simpli-

fied Chinese.

Japanese
Japanese uses one of the most com-

plex writing systems on earth, with no

fewer than four character sets: kanji, hira-

gana, katakana, and romaji, all of which

can be freely mixed in Japanese text.

Kanji requires little explanation: the

characters are Chinese. In fact, the very

word “Kanji” means, literally, “Chinese

Character.” Japanese uses about 6,000

Chinese characters – 2,000 in everyday

life – and by and large they have the

same, or similar, meanings as they do in

Chinese. In fact, they usually have a

“Chinese” pronunciation in addition to

one or more Japanese pronunciations.

For example, the character for moun-

tain, , can be read with the

“Japanese” pronunciation “yama,” or

“san,” similar to the Chinese pronuncia-

tion “shan.”

Hiragana and katakana, collectively

know as kana, are phonetic writing sys-

tems. However, they are not alphabetic in

the way Westerners are used to. They

don’t represent vowels and consonants.

Rather, each kana character represents

one syllable. For example, “a,”“mi,” or “to.”

There are ways of modifying some of the

characters – For example, making “sa”

into “za,” or “ki” into “kyo,” but all sounds in

the Japanese language can be represent-

ed by one of the 46 hiragana or katakana

characters.

Hiragana and katakana characters are

phonetic duplicates of each other. That is,

for every hiragana character, there is a

corresponding katakana character, pro-

nounced exactly the same. With some

exceptions, hiragana is used for native

Japanese words, and katakana is used for

“loan words” – words imported from

other languages, usually English – of



8 • 2004 MXDJ.COM • 57

which there are many.

The other character set the Japanese

language uses is romaji, or Roman char-

acters. These are the same letters used in

Western European languages – basically,

the same letters you have been reading

for the past fifteen minutes or so. Romaji

are usually used to spell a foreign name

or word.

There are three popular Japanese

character encodings, all based on the

“Japanese Industrial Standard,” or JIS.

When people speak of JIS encoding, they

are referring to the ISO standard 2022-JP,

which is actually a 7-bit code sometimes

used for transmitting characters. 

More commonly used now is EUC, or

Extended UNIX Coding, which is a multi-

byte system utilizing 8-bit bytes, and is

pretty much the standard on the

Internet. The other system, Shift-JIS, was

developed by Microsoft for Japanese ver-

sions of their OS and software, and is the

encoding used for things like files and

applications.

Korean
Korean text, or Hangul, is probably

the easiest to understand. Hangul char-

acters, like Japanese kana, represent syl-

lables. Unlike Japanese kana, however,

Hangul characters are formed with

strokes representing vowels and conso-

nants, and combined into syllabic

blocks called jamo. You should note

that, even though the basic Hangul

strokes represent individual sounds,

they are not combined to form words,

but syllables that are then combined to

form words. 

The Hangul system has been used in

Korea for over 500 years, since its inven-

tion in 1443. Before that, the Korean lan-

guage was written with Chinese charac-

ters. You will still find Chinese characters

in Korean text, though it is becoming less

common. The Korean Standard Hangul

Coding Scheme for Communications

(KS5601) includes nearly 5,000 Chinese

characters in addition to over 2,300

Hangul characters.

Tying It All Together
Representing the world’s hundreds of

languages on computers is a daunting

and complex task. This article has cov-

ered the basics of a few languages, on a

single system, Windows. We haven’t

addressed input or Unicode, either of

which would need an entire article, or

book, to be covered in any depth.

However, this is a start, and hopefully

will provide a jumping-off point for you

to explore the subject in more depth.

Then maybe your coworkers will call

you guru – and mean it.

Kerry Thompson is a Boston-area free-

lance developer specializing in multi-

media and multilingual projects. He has

been programming since 1981, working

in languages such as Basic, FOR-

TRAN, COBOL, 6502 and 8088

Assembler, C/C++, JavaScript, XSLT,

and HTML. He first came to the

Macromedia world in the early 90s

with Director 4 and, a few years later,

Flash. His interest in languages stems

from his time living in Beijing, and sub-

sequent stints developing multilingual

software for companies such as Sony

and Disney Interactive. He devotes

much of his spare time to music, play-

ing French Horn in several Boston area

groups, including holding the principal

spot in the Boston Civic Orchestra.

alpha@cyberiantiger.biz



58 • MXDJ.COM 8 • 2004

va
n

g
u

a
rd

 

ne Hundred and Forty Decibels is a short film about a depressed man whose

anxiety escalates as he becomes increasingly more sensitive towards his envi-

ronment, particularly noise. His midtown Manhattan apartment is both sanctu-

ary and prison.

Louis F. Cuffari, art director of 140 Decibels, created animated introduction titles using

Macromedia Flash. The animation spirals through scenes that produce loud noise in the

city. The credits of the film dissolve in and out along with each illustration.

140 Decibels is an Insomnia Creations production, directed by Steve Blanco.

www.insomniacreations.com/online/140decibels/

140 Decibels

o




